These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35247763)

  • 1. A generic neural network model to estimate populational neural activity for robust neural decoding.
    Roy R; Xu F; Kamper DG; Hu X
    Comput Biol Med; 2022 May; 144():105359. PubMed ID: 35247763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time finger force prediction via parallel convolutional neural networks: a preliminary study.
    Xu F; Zheng Y; Hu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3126-3129. PubMed ID: 33018667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concurrent Prediction of Finger Forces Based on Source Separation and Classification of Neuron Discharge Information.
    Zheng Y; Hu X
    Int J Neural Syst; 2021 Jun; 31(6):2150010. PubMed ID: 33541251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time isometric finger extension force estimation based on motor unit discharge information.
    Zheng Y; Hu X
    J Neural Eng; 2019 Oct; 16(6):066006. PubMed ID: 31234147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Individual Finger Forces Based on Decoded Motoneuron Activities.
    Dai C; Cao Y; Hu X
    Ann Biomed Eng; 2019 Jun; 47(6):1357-1368. PubMed ID: 30834478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concurrent Estimation of Finger Flexion and Extension Forces Using Motoneuron Discharge Information.
    Zheng Y; Hu X
    IEEE Trans Biomed Eng; 2021 May; 68(5):1638-1645. PubMed ID: 33534701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finger Joint Angle Estimation Based on Motoneuron Discharge Activities.
    Dai C; Hu X
    IEEE J Biomed Health Inform; 2020 Mar; 24(3):760-767. PubMed ID: 31283514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concurrent and Continuous Prediction of Finger Kinetics and Kinematics via Motoneuron Activities.
    Roy R; Zheng Y; Kamper DG; Hu X
    IEEE Trans Biomed Eng; 2023 Jun; 70(6):1911-1920. PubMed ID: 37015495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A convolutional neural network to identify motor units from high-density surface electromyography signals in real time.
    Wen Y; Avrillon S; Hernandez-Pavon JC; Kim SJ; Hug F; Pons JL
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33721852
    [No Abstract]   [Full Text] [Related]  

  • 10. Finger Force Estimation Using Motor Unit Discharges Across Forearm Postures.
    Rubin N; Zheng Y; Huang H; Hu X
    IEEE Trans Biomed Eng; 2022 Sep; 69(9):2767-2775. PubMed ID: 35213304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a generalizable deep CNN for neural drive estimation across muscles and participants.
    Wen Y; Kim SJ; Avrillon S; Levine JT; Hug F; Pons JL
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36548991
    [No Abstract]   [Full Text] [Related]  

  • 12. Estimation of Finger Joint Angle Based on Neural Drive Extracted from High-Density Electromyography.
    Dai C; Cao Y; Hu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4820-4823. PubMed ID: 30441425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model.
    Ngeo JG; Tamei T; Shibata T
    J Neuroeng Rehabil; 2014 Aug; 11():122. PubMed ID: 25123024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dexterous Force Estimation during Finger Flexion and Extension Using Motor Unit Discharge Information.
    Zheng Y; Hu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3130-3133. PubMed ID: 33018668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Deep CNN Framework for Neural Drive Estimation From HD-EMG Across Contraction Intensities and Joint Angles.
    Wen Y; Kim SJ; Avrillon S; Levine JT; Hug F; Pons JL
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2950-2959. PubMed ID: 36251912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asynchronous decoding of finger position and of EMG during precision grip using CM cell activity: application to robot control.
    Ouanezar S; Eskiizmirliler S; Maier MA
    J Integr Neurosci; 2011 Dec; 10(4):489-511. PubMed ID: 22262537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examination of Poststroke Alteration in Motor Unit Firing Behavior Using High-Density Surface EMG Decomposition.
    Li X; Holobar A; Gazzoni M; Merletti R; Rymer WZ; Zhou P
    IEEE Trans Biomed Eng; 2015 May; 62(5):1242-52. PubMed ID: 25389239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of finger kinematics from discharge timings of motor units: implications for intuitive control of myoelectric prostheses.
    Chen C; Chai G; Guo W; Sheng X; Farina D; Zhu X
    J Neural Eng; 2019 Apr; 16(2):026005. PubMed ID: 30523815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Real-Time Method for Decoding the Neural Drive to Muscles Using Single-Channel Intra-Muscular EMG Recordings.
    Karimimehr S; Marateb HR; Muceli S; Mansourian M; MaƱanas MA; Farina D
    Int J Neural Syst; 2017 Sep; 27(6):1750025. PubMed ID: 28427290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beta-band motor unit coherence and nonlinear surface EMG features of the first dorsal interosseous muscle vary with force.
    McManus L; Flood MW; Lowery MM
    J Neurophysiol; 2019 Sep; 122(3):1147-1162. PubMed ID: 31365308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.