BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35247841)

  • 1. Generation of a MSX1 knockout human embryonic stem cell line using CRISPR/Cas9 technology.
    Chiu W; Li A; Wang T; Li W; Zhang X
    Stem Cell Res; 2022 Apr; 60():102729. PubMed ID: 35247841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment of a congenital tooth agenesis related gene MSX1 knockout human embryonic stem cell lines by CRISPR-Cas9 technology.
    Xue Y; Zhu M; Qin D; Li Y; Cen X; Sun X; Lian W; Liao B
    Stem Cell Res; 2017 Oct; 24():151-154. PubMed ID: 29034883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of a FLNA knockout hESC line (WAe009-A-P) to model cardiac valvular dysplasia using CRISPR/Cas9.
    Lu F; Gao Y; Li E
    Stem Cell Res; 2023 Sep; 71():103162. PubMed ID: 37429070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MSX1 mutations and associated disease phenotypes: genotype-phenotype relations.
    Liang J; Von den Hoff J; Lange J; Ren Y; Bian Z; Carels CE
    Eur J Hum Genet; 2016 Dec; 24(12):1663-1670. PubMed ID: 27381090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishment of an ectodermal dysplasia related gene EDA Knockout human embryonic stem cell line (WAe001-A-22) by CRISPR-Cas9 technology.
    Xue Y; Liao B; Xie Y; Li S; Ma X; Sun X
    Stem Cell Res; 2019 Jan; 34():101379. PubMed ID: 30605838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel human mutation and CRISPR/Cas genome-edited mice reveal the importance of C-terminal domain of MSX1 in tooth and palate development.
    Mitsui SN; Yasue A; Masuda K; Naruto T; Minegishi Y; Oyadomari S; Noji S; Imoto I; Tanaka E
    Sci Rep; 2016 Dec; 6():38398. PubMed ID: 27917906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MSX1 and orofacial clefting with and without tooth agenesis.
    Modesto A; Moreno LM; Krahn K; King S; Lidral AC
    J Dent Res; 2006 Jun; 85(6):542-6. PubMed ID: 16723652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of two ERF gene knockout human embryonic stem cell lines using CRISPR/Cas9 system.
    Si L; Yang R; Liu J; Dong Y; Zhang H; Xu X
    Stem Cell Res; 2019 Dec; 41():101644. PubMed ID: 31743839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of a TAB2 knockout hESC line (WAe009-A-Z) derived from H9 using CRISPR/Cas9.
    Sun W; Li X; Dong J; Zhou Y
    Stem Cell Res; 2024 Feb; 74():103284. PubMed ID: 38118206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of an NSD2-deficient human embryonic stem cell line using CRISPR/Cas9 technology.
    Zhao K; Zhang H; Cui J; Zhang Y; Zhou T; Long B
    Stem Cell Res; 2023 Dec; 73():103255. PubMed ID: 37992565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of a TLE1 homozygous knockout human embryonic stem cell line using CRISPR-Cas9.
    Herring A; Messana A; Bara AM; Hazelbaker DZ; Eggan K; Barrett LE
    Stem Cell Res; 2016 Sep; 17(2):430-432. PubMed ID: 27879218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of myoglobin (MB)-knockout human embryonic stem cell (hESC) line (KAIMRCe002-A-1S) using CRISPR/Cas9 technology.
    Alowaysi M; Al-Shehri M; Baadhaim M; AlZahrani H; Aboalola D; Daghestani M; Hashem H; Aljahdali R; Salem R; Alharbi A; Muharraq M; Alghamdi K; Alsobiy F; Zia A; Lehmann R; Tegner J; Alsayegh K
    Stem Cell Res; 2023 Sep; 71():103158. PubMed ID: 37406498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of a TRPM8 knockout hESC line (WAe009-A-A) derived from H9 using CRISPR/Cas9.
    Bai J; Zhang J; Fu W; Li S; Tian X; Li X; Zhao X; Dong J
    Stem Cell Res; 2023 Mar; 67():103040. PubMed ID: 36796252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of a Nrf2 homozygous knockout human embryonic stem cell line using CRISPR/Cas9.
    Kim SJ; Habib O; Kim JS; Han HW; Koo SK; Kim JH
    Stem Cell Res; 2017 Mar; 19():46-48. PubMed ID: 28413005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A homozygous Keap1-knockout human embryonic stem cell line generated using CRISPR/Cas9 mediates gene targeting.
    Kim SJ; Habib O; Kim JS; Han HW; Koo SK; Kim JH
    Stem Cell Res; 2017 Mar; 19():52-54. PubMed ID: 28413007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of a GFI1-flag knock-in human embryonic stem cell line using CRISPR-Cas9 technology.
    Kang B; Cong Z; Duan J; Liu K; Wang Y
    Stem Cell Res; 2022 Apr; 60():102724. PubMed ID: 35248880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic interactions between Pax9 and Msx1 regulate lip development and several stages of tooth morphogenesis.
    Nakatomi M; Wang XP; Key D; Lund JJ; Turbe-Doan A; Kist R; Aw A; Chen Y; Maas RL; Peters H
    Dev Biol; 2010 Apr; 340(2):438-49. PubMed ID: 20123092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CRISPR/Cas9 strategy for the generation of a FLNC knockout hESC line (WAe009-A-70) to model dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy.
    Qin Z; Sun L; Sun X; Su H; Gao X
    Stem Cell Res; 2021 Oct; 56():102562. PubMed ID: 34634758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of FHL2 homozygous knockout lines from human embryonic stem cells by CRISPR/Cas9-mediated ablation.
    Chang CW; Chang CC; Hsia KC; Tsai SY
    Stem Cell Res; 2018 Mar; 27():21-24. PubMed ID: 29291512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generating an MEIS1 homozygous knockout human embryonic stem cell line using the CRISPR/Cas9 system.
    Zhang C; Yu Y; Li F; Lan X; Wang L
    Stem Cell Res; 2020 Dec; 49():102069. PubMed ID: 33157390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.