These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35247918)

  • 1. Inhibition of Oxidized Nucleotide Sanitation By TH1579 and Conventional Chemotherapy Cooperatively Enhance Oxidative DNA Damage and Survival in AML.
    Centio A; Estruch M; Reckzeh K; Sanjiv K; Vittori C; Engelhard S; Warpman Berglund U; Helleday T; Theilgaard-Mönch K
    Mol Cancer Ther; 2022 May; 21(5):703-714. PubMed ID: 35247918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MTH1 Inhibitor TH1579 Induces Oxidative DNA Damage and Mitotic Arrest in Acute Myeloid Leukemia.
    Sanjiv K; Calderón-Montaño JM; Pham TM; Erkers T; Tsuber V; Almlöf I; Höglund A; Heshmati Y; Seashore-Ludlow B; Nagesh Danda A; Gad H; Wiita E; Göktürk C; Rasti A; Friedrich S; Centio A; Estruch M; Våtsveen TK; Struyf N; Visnes T; Scobie M; Koolmeister T; Henriksson M; Wallner O; Sandvall T; Lehmann S; Theilgaard-Mönch K; Garnett MJ; Östling P; Walfridsson J; Helleday T; Warpman Berglund U
    Cancer Res; 2021 Nov; 81(22):5733-5744. PubMed ID: 34593524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TH1579, MTH1 inhibitor, delays tumour growth and inhibits metastases development in osteosarcoma model.
    Moukengue B; Brown HK; Charrier C; Battaglia S; Baud'huin M; Quillard T; Pham TM; Pateras IS; Gorgoulis VG; Helleday T; Heymann D; Berglund UW; Ory B; Lamoureux F
    EBioMedicine; 2020 Mar; 53():102704. PubMed ID: 32151797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted inhibition of cooperative mutation- and therapy-induced AKT activation in AML effectively enhances response to chemotherapy.
    Estruch M; Reckzeh K; Vittori C; Centio A; Ali M; Engelhard S; Zhao L; Won KJ; Liu P; Porse BT; Theilgaard-Mönch K
    Leukemia; 2021 Jul; 35(7):2030-2042. PubMed ID: 33299144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation to Chronic-Cycling Hypoxia Renders Cancer Cells Resistant to MTH1-Inhibitor Treatment Which Can Be Counteracted by Glutathione Depletion.
    Hansel C; Hlouschek J; Xiang K; Melnikova M; Thomale J; Helleday T; Jendrossek V; Matschke J
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitocurcumin utilizes oxidative stress to upregulate JNK/p38 signaling and overcomes Cytarabine resistance in acute myeloid leukemia.
    Gaur T; Ali A; Sharma D; Gupta SK; Gota V; Bagal B; Platzbeckar U; Mishra R; Dutt A; Khattry N; Mills K; Hassan MI; Sandur S; Hasan SK
    Cell Signal; 2024 Feb; 114():111004. PubMed ID: 38048856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pim kinase inhibition sensitizes FLT3-ITD acute myeloid leukemia cells to topoisomerase 2 inhibitors through increased DNA damage and oxidative stress.
    Doshi KA; Trotta R; Natarajan K; Rassool FV; Tron AE; Huszar D; Perrotti D; Baer MR
    Oncotarget; 2016 Jul; 7(30):48280-48295. PubMed ID: 27374090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpressed c-Myc Sensitizes Cells to TH1579, a Mitotic Arrest and Oxidative DNA Damage Inducer.
    Henriksson S; Calderón-Montaño JM; Solvie D; Warpman Berglund U; Helleday T
    Biomolecules; 2022 Nov; 12(12):. PubMed ID: 36551206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MTH1 as a target to alleviate T cell driven diseases by selective suppression of activated T cells.
    Karsten S; Fiskesund R; Zhang XM; Marttila P; Sanjiv K; Pham T; Rasti A; Bräutigam L; Almlöf I; Marcusson-Ståhl M; Sandman C; Platzack B; Harris RA; Kalderén C; Cederbrant K; Helleday T; Warpman Berglund U
    Cell Death Differ; 2022 Jan; 29(1):246-261. PubMed ID: 34453118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antitumour activity of TH1579, a novel MTH1 inhibitor, against castration-resistant prostate cancer.
    Hu M; Ning J; Mao L; Yu Y; Wu Y
    Oncol Lett; 2021 Jan; 21(1):62. PubMed ID: 33281973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation and development of MTH1 inhibitors for treatment of cancer.
    Warpman Berglund U; Sanjiv K; Gad H; Kalderén C; Koolmeister T; Pham T; Gokturk C; Jafari R; Maddalo G; Seashore-Ludlow B; Chernobrovkin A; Manoilov A; Pateras IS; Rasti A; Jemth AS; Almlöf I; Loseva O; Visnes T; Einarsdottir BO; Gaugaz FZ; Saleh A; Platzack B; Wallner OA; Vallin KS; Henriksson M; Wakchaure P; Borhade S; Herr P; Kallberg Y; Baranczewski P; Homan EJ; Wiita E; Nagpal V; Meijer T; Schipper N; Rudd SG; Bräutigam L; Lindqvist A; Filppula A; Lee TC; Artursson P; Nilsson JA; Gorgoulis VG; Lehtiö J; Zubarev RA; Scobie M; Helleday T
    Ann Oncol; 2016 Dec; 27(12):2275-2283. PubMed ID: 27827301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of MTH1 inhibition-induced DNA strand breaks: The slippery slope from the oxidized nucleotide pool to genotoxic damage.
    Rai P; Sobol RW
    DNA Repair (Amst); 2019 May; 77():18-26. PubMed ID: 30852368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Double-Edged Sword: The Anti-Cancer Effects of Emodin by Inhibiting the Redox-Protective Protein MTH1 and Augmenting ROS in NSCLC.
    Wahi D; Soni D; Grover A
    J Cancer; 2021; 12(3):652-681. PubMed ID: 33403025
    [No Abstract]   [Full Text] [Related]  

  • 14. FLT3-ITD cooperates with Rac1 to modulate the sensitivity of leukemic cells to chemotherapeutic agents via regulation of DNA repair pathways.
    Wu M; Li L; Hamaker M; Small D; Duffield AS
    Haematologica; 2019 Dec; 104(12):2418-2428. PubMed ID: 30975911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MTH1 deficiency selectively increases non-cytotoxic oxidative DNA damage in lung cancer cells: more bad news than good?
    Abbas HHK; Alhamoudi KMH; Evans MD; Jones GDD; Foster SS
    BMC Cancer; 2018 Apr; 18(1):423. PubMed ID: 29661172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitotic MTH1 Inhibitors in Treatment of Cancer.
    Helleday T
    Cancer Treat Res; 2023; 186():223-237. PubMed ID: 37978139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting Myeloperoxidase Disrupts Mitochondrial Redox Balance and Overcomes Cytarabine Resistance in Human Acute Myeloid Leukemia.
    Hosseini M; Rezvani HR; Aroua N; Bosc C; Farge T; Saland E; Guyonnet-Dupérat V; Zaghdoudi S; Jarrou L; Larrue C; Sabatier M; Mouchel PL; Gotanègre M; Piechaczyk M; Bossis G; Récher C; Sarry JE
    Cancer Res; 2019 Oct; 79(20):5191-5203. PubMed ID: 31358527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blockade of JAK2/STAT3 intensifies the anti-tumor activity of arsenic trioxide in acute myeloid leukemia cells: Novel synergistic mechanism via the mediation of reactive oxygen species.
    Mesbahi Y; Zekri A; Ghaffari SH; Tabatabaie PS; Ahmadian S; Ghavamzadeh A
    Eur J Pharmacol; 2018 Sep; 834():65-76. PubMed ID: 30012499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of an Additional Chromosome on the Clinical Outcomes of Hematopoietic Stem Cell Transplantation in Philadelphia Chromosome-Positive Acute Myeloid Leukemia in Adults.
    Min GJ; Kim HJ; Yoon JH; Kwak DH; Park SS; Jeon YW; Lee SE; Cho BS; Eom KS; Kim YJ; Lee S; Min CK; Cho SG; Kim DW; Lee JW; Min WS
    Biol Blood Marrow Transplant; 2018 Aug; 24(8):1621-1628. PubMed ID: 29698793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antineoplastic mechanisms of niclosamide in acute myelogenous leukemia stem cells: inactivation of the NF-kappaB pathway and generation of reactive oxygen species.
    Jin Y; Lu Z; Ding K; Li J; Du X; Chen C; Sun X; Wu Y; Zhou J; Pan J
    Cancer Res; 2010 Mar; 70(6):2516-27. PubMed ID: 20215516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.