BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35248091)

  • 1. 3D surface reconstruction of the femur and tibia from parallel 2D contours.
    Lin B; Jin D; Socorro Borges MA
    J Orthop Surg Res; 2022 Mar; 17(1):145. PubMed ID: 35248091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D femur model reconstruction from biplane X-ray images: a novel method based on Laplacian surface deformation.
    Karade V; Ravi B
    Int J Comput Assist Radiol Surg; 2015 Apr; 10(4):473-85. PubMed ID: 25037878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biplanar reconstruction method based on 2D and 3D contours: application to the distal femur.
    Laporte S; Skalli W; de Guise JA; Lavaste F; Mitton D
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):1-6. PubMed ID: 12623432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive reconstruction of pipe-shaped human organs from 3D ultrasonic volume.
    Min K; Choi YJ
    Comput Med Imaging Graph; 2006 Mar; 30(2):109-21. PubMed ID: 16487680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 3D reconstruction method based on multi-views of contours segmented with CNN-transformer for long bones.
    Ge Y; Zhang Q; Shen Y; Sun Y; Huang C
    Int J Comput Assist Radiol Surg; 2022 Oct; 17(10):1891-1902. PubMed ID: 35851828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the tibiofemoral joint space using x-ray tomosynthesis.
    Kalinosky B; Sabol JM; Piacsek K; Heckel B; Gilat Schmidt T
    Med Phys; 2011 Dec; 38(12):6672-82. PubMed ID: 22149849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic extraction of proximal femur contours from calibrated X-ray images using 3D statistical models: an in vitro study.
    Dong X; Zheng G
    Int J Med Robot; 2009 Jun; 5(2):213-22. PubMed ID: 19343704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro 3D reconstruction of long bones using B-scan image processing.
    Migeon B; Marché P
    Med Biol Eng Comput; 1997 Jul; 35(4):369-72. PubMed ID: 9327614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High quality surface reconstruction in radiotherapy: Cross-sectional contours to 3D mesh using wavelets.
    Moriconi S; Scalco E; Broggi S; Avuzzi B; Valdagni R; Rizzo G
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4222-5. PubMed ID: 26737226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully automatic reconstruction of personalized 3D volumes of the proximal femur from 2D X-ray images.
    Yu W; Chu C; Tannast M; Zheng G
    Int J Comput Assist Radiol Surg; 2016 Sep; 11(9):1673-85. PubMed ID: 27038965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2D/3D reconstruction of the distal femur using statistical shape models addressing personalized surgical instruments in knee arthroplasty: A feasibility analysis.
    Cerveri P; Sacco C; Olgiati G; Manzotti A; Baroni G
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28387436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph.
    Zheng G
    Med Phys; 2010 Apr; 37(4):1424-39. PubMed ID: 20443464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A reliable surface reconstruction system in biomedicine.
    Chen YC; Chen YC; Chiang AS; Hsieh KS
    Comput Methods Programs Biomed; 2007 May; 86(2):141-52. PubMed ID: 17368863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iterative mesh transformation for 3D segmentation of livers with cancers in CT images.
    Lu D; Wu Y; Harris G; Cai W
    Comput Med Imaging Graph; 2015 Jul; 43():1-14. PubMed ID: 25728595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technical Note: Solving the "Chinese postman problem" for effective contour deformation.
    Wang J; Zhang Y; Zhang L; Dong L; Balter PA; Court LE; Yang J
    Med Phys; 2018 Feb; 45(2):767-772. PubMed ID: 29178498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 2D/3D correspondence building method for reconstruction of a patient-specific 3D bone surface model using point distribution models and calibrated X-ray images.
    Zheng G; Gollmer S; Schumann S; Dong X; Feilkas T; González Ballester MA
    Med Image Anal; 2009 Dec; 13(6):883-99. PubMed ID: 19162529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmentation of radiographic images under topological constraints: application to the femur.
    Gamage P; Xie SQ; Delmas P; Xu WL
    Int J Comput Assist Radiol Surg; 2010 Sep; 5(5):425-35. PubMed ID: 20108125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of interpolation methods for surface-based motion compensated tomographic reconstruction for cardiac angiographic C-arm data.
    Müller K; Schwemmer C; Hornegger J; Zheng Y; Wang Y; Lauritsch G; Rohkohl C; Maier AK; Schultz C; Fahrig R
    Med Phys; 2013 Mar; 40(3):031107. PubMed ID: 23464287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D reconstruction of coronary arteries from 2D angiographic projections using non-uniform rational basis splines (NURBS) for accurate modelling of coronary stenoses.
    Galassi F; Alkhalil M; Lee R; Martindale P; Kharbanda RK; Channon KM; Grau V; Choudhury RP
    PLoS One; 2018; 13(1):e0190650. PubMed ID: 29298341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliability of a new method for lower-extremity measurements based on stereoradiographic three-dimensional reconstruction.
    Guenoun B; Zadegan F; Aim F; Hannouche D; Nizard R
    Orthop Traumatol Surg Res; 2012 Sep; 98(5):506-13. PubMed ID: 22858107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.