These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35248809)

  • 1. Sign Stochastic Gradient Descents without bounded gradient assumption for the finite sum minimization.
    Sun T; Li D
    Neural Netw; 2022 May; 149():195-203. PubMed ID: 35248809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sign-Based Gradient Descent With Heterogeneous Data: Convergence and Byzantine Resilience.
    Jin R; Liu Y; Huang Y; He X; Wu T; Dai H
    IEEE Trans Neural Netw Learn Syst; 2024 Jan; PP():. PubMed ID: 38215315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic Gradient Descent for Nonconvex Learning Without Bounded Gradient Assumptions.
    Lei Y; Hu T; Li G; Tang K
    IEEE Trans Neural Netw Learn Syst; 2020 Oct; 31(10):4394-4400. PubMed ID: 31831449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shuffling-type gradient method with bandwidth-based step sizes for finite-sum optimization.
    Liang Y; Yang Y; Liu J; Xu D
    Neural Netw; 2024 Nov; 179():106514. PubMed ID: 39024708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gradient Descent Learning With Floats.
    Sun T; Tang K; Li D
    IEEE Trans Cybern; 2022 Mar; 52(3):1763-1771. PubMed ID: 32525810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Convergence Results of Adaptive Stochastic Gradient Descents.
    Sun T; Qiao L; Liao Q; Li D
    IEEE Trans Image Process; 2021; 30():1044-1056. PubMed ID: 33237857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic momentum methods for non-convex learning without bounded assumptions.
    Liang Y; Liu J; Xu D
    Neural Netw; 2023 Aug; 165():830-845. PubMed ID: 37418864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Faster First-Order Methods for Stochastic Non-Convex Optimization on Riemannian Manifolds.
    Zhou P; Yuan XT; Yan S; Feng J
    IEEE Trans Pattern Anal Mach Intell; 2021 Feb; 43(2):459-472. PubMed ID: 31398110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Painless Stochastic Conjugate Gradient for Large-Scale Machine Learning.
    Yang Z
    IEEE Trans Neural Netw Learn Syst; 2024 Oct; 35(10):14645-14658. PubMed ID: 37285250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Variance Reduction Methods for Riemannian Non-Convex Optimization.
    Han A; Gao J
    IEEE Trans Pattern Anal Mach Intell; 2022 Nov; 44(11):7610-7623. PubMed ID: 34516373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distributed Stochastic Gradient Tracking Algorithm With Variance Reduction for Non-Convex Optimization.
    Jiang X; Zeng X; Sun J; Chen J
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5310-5321. PubMed ID: 35536804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonergodic Complexity of Proximal Inertial Gradient Descents.
    Sun T; Qiao L; Li D
    IEEE Trans Neural Netw Learn Syst; 2021 Oct; 32(10):4613-4626. PubMed ID: 32997636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic quasi-gradient methods: variance reduction via Jacobian sketching.
    Gower RM; Richtárik P; Bach F
    Math Program; 2021; 188(1):135-192. PubMed ID: 34720193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Sharp Estimate on the Transient Time of Distributed Stochastic Gradient Descent.
    Pu S; Olshevsky A; Paschalidis IC
    IEEE Trans Automat Contr; 2022 Nov; 67(11):5900-5915. PubMed ID: 37284602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deterministic Gradient-Descent Learning of Linear Regressions: Adaptive Algorithms, Convergence Analysis and Noise Compensation.
    Liu KZ; Gan C
    IEEE Trans Pattern Anal Mach Intell; 2024 Dec; 46(12):7867-7877. PubMed ID: 38728130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the Convergence Analysis of the Optimized Gradient Method.
    Kim D; Fessler JA
    J Optim Theory Appl; 2017 Jan; 172(1):187-205. PubMed ID: 28461707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust Asynchronous Stochastic Gradient-Push: Asymptotically Optimal and Network-Independent Performance for Strongly Convex Functions.
    Spiridonoff A; Olshevsky A; Paschalidis IC
    J Mach Learn Res; 2020; 21():. PubMed ID: 32989377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Implementation of Second-Order Stochastic Approximation Algorithms in High-Dimensional Problems.
    Zhu J; Wang L; Spall JC
    IEEE Trans Neural Netw Learn Syst; 2020 Aug; 31(8):3087-3099. PubMed ID: 31536020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong convergence and bounded perturbation resilience of a modified proximal gradient algorithm.
    Guo Y; Cui W
    J Inequal Appl; 2018; 2018(1):103. PubMed ID: 29755243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic Optimization for Nonconvex Problem With Inexact Hessian Matrix, Gradient, and Function.
    Liu L; Liu X; Hsieh CJ; Tao D
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; PP():. PubMed ID: 38039170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.