BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 35249133)

  • 1. The network centered on ICEs play roles in plant cold tolerance, growth and development.
    Wang X; Song Q; Liu Y; Brestic M; Yang X
    Planta; 2022 Mar; 255(4):81. PubMed ID: 35249133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cold-responsive gene regulation during cold acclimation in plants.
    Lissarre M; Ohta M; Sato A; Miura K
    Plant Signal Behav; 2010 Aug; 5(8):948-52. PubMed ID: 20699657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CBF-dependent signaling pathway: a key responder to low temperature stress in plants.
    Zhou MQ; Shen C; Wu LH; Tang KX; Lin J
    Crit Rev Biotechnol; 2011 Jun; 31(2):186-92. PubMed ID: 20919819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple.
    Feng XM; Zhao Q; Zhao LL; Qiao Y; Xie XB; Li HF; Yao YX; You CX; Hao YJ
    BMC Plant Biol; 2012 Feb; 12():22. PubMed ID: 22336381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular and functional characterization of cold-responsive C-repeat binding factors from Brachypodium distachyon.
    Ryu JY; Hong SY; Jo SH; Woo JC; Lee S; Park CM
    BMC Plant Biol; 2014 Jan; 14():15. PubMed ID: 24405987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ICE-CBF-COR Signaling Cascade and Its Regulation in Plants Responding to Cold Stress.
    Hwarari D; Guan Y; Ahmad B; Movahedi A; Min T; Hao Z; Lu Y; Chen J; Yang L
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary history of the C-repeat binding factor/dehydration-responsive element-binding 1 (CBF/DREB1) protein family in 43 plant species and characterization of CBF/DREB1 proteins in Solanum tuberosum.
    Li W; Chen Y; Ye M; Lu H; Wang D; Chen Q
    BMC Evol Biol; 2020 Nov; 20(1):142. PubMed ID: 33143637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold stress regulation of gene expression in plants.
    Chinnusamy V; Zhu J; Zhu JK
    Trends Plant Sci; 2007 Oct; 12(10):444-51. PubMed ID: 17855156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cold signal transduction and its interplay with phytohormones during cold acclimation.
    Shi Y; Ding Y; Yang S
    Plant Cell Physiol; 2015 Jan; 56(1):7-15. PubMed ID: 25189343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene Regulation and Signal Transduction in the ICE-CBF-COR Signaling Pathway during Cold Stress in Plants.
    Wang DZ; Jin YN; Ding XH; Wang WJ; Zhai SS; Bai LP; Guo ZF
    Biochemistry (Mosc); 2017 Oct; 82(10):1103-1117. PubMed ID: 29037131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensing, signalling, and regulatory mechanism of cold-stress tolerance in plants.
    Gusain S; Joshi S; Joshi R
    Plant Physiol Biochem; 2023 Apr; 197():107646. PubMed ID: 36958153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene regulation during cold stress acclimation in plants.
    Chinnusamy V; Zhu JK; Sunkar R
    Methods Mol Biol; 2010; 639():39-55. PubMed ID: 20387039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the regulation of C-repeat binding factors in plant cold signaling.
    Liu J; Shi Y; Yang S
    J Integr Plant Biol; 2018 Sep; 60(9):780-795. PubMed ID: 29667328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel basic helix-loop-helix transcription factor, ZjICE2 from Zoysia japonica confers abiotic stress tolerance to transgenic plants via activating the DREB/CBF regulon and enhancing ROS scavenging.
    Zuo ZF; Kang HG; Hong QC; Park MY; Sun HJ; Kim J; Song PS; Lee HY
    Plant Mol Biol; 2020 Mar; 102(4-5):447-462. PubMed ID: 31898148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An apple NAC transcription factor negatively regulates cold tolerance via CBF-dependent pathway.
    An JP; Li R; Qu FJ; You CX; Wang XF; Hao YJ
    J Plant Physiol; 2018 Feb; 221():74-80. PubMed ID: 29253732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants.
    Byun MY; Lee J; Cui LH; Kang Y; Oh TK; Park H; Lee H; Kim WT
    Plant Sci; 2015 Jul; 236():61-74. PubMed ID: 26025521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms.
    Hossain MA; Li ZG; Hoque TS; Burritt DJ; Fujita M; Munné-Bosch S
    Protoplasma; 2018 Jan; 255(1):399-412. PubMed ID: 28776104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MdHY5 positively regulates cold tolerance via CBF-dependent and CBF-independent pathways in apple.
    An JP; Yao JF; Wang XN; You CX; Wang XF; Hao YJ
    J Plant Physiol; 2017 Nov; 218():275-281. PubMed ID: 29031181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and genetic perspectives of cold tolerance in wheat.
    Ahad A; Gul A; Batool TS; Huda NU; Naseeer F; Abdul Salam U; Abdul Salam M; Ilyas M; Turkyilmaz Unal B; Ozturk M
    Mol Biol Rep; 2023 Aug; 50(8):6997-7015. PubMed ID: 37378744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The rice transcription factors OsICE confer enhanced cold tolerance in transgenic Arabidopsis.
    Deng C; Ye H; Fan M; Pu T; Yan J
    Plant Signal Behav; 2017 May; 12(5):e1316442. PubMed ID: 28414264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.