These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 35250369)
1. Formation of Single-Walled Carbon Nanotube-Ruthenium Nanoparticles in Ethanol upon Microwave Radiation. Hemraj-Benny T; Pimentel L; Emeran G Inorg Chem Commun; 2020 Feb; 112():. PubMed ID: 35250369 [TBL] [Abstract][Full Text] [Related]
2. Single-walled carbon nanotube supported Pt-Ru bimetallic superb nanocatalyst for the hydrogen generation from the methanolysis of methylamine-borane at mild conditions. Sogut EG; Acidereli H; Kuyuldar E; Karatas Y; Gulcan M; Sen F Sci Rep; 2019 Oct; 9(1):15724. PubMed ID: 31673073 [TBL] [Abstract][Full Text] [Related]
3. Microwave-assisted synthesis of small Ru nanoparticles and their role in degradation of congo red. Gupta S; Giordano C; Gradzielski M; Mehta SK J Colloid Interface Sci; 2013 Dec; 411():173-81. PubMed ID: 24055253 [TBL] [Abstract][Full Text] [Related]
4. Highly conductive and transparent single-walled carbon nanotube thin films from ethanol by floating catalyst chemical vapor deposition. Ding EX; Jiang H; Zhang Q; Tian Y; Laiho P; Hussain A; Liao Y; Wei N; Kauppinen EI Nanoscale; 2017 Nov; 9(44):17601-17609. PubMed ID: 29114684 [TBL] [Abstract][Full Text] [Related]
5. Particle size-control enables extraordinary activity of ruthenium nanoparticles/multiwalled carbon nanotube catalysts towards the oxygen reduction reaction. Liu C; Bai G; Jiao Z; Lv B; Wang Y; Tong X; Yang N Nanoscale; 2019 Aug; 11(29):13968-13976. PubMed ID: 31305840 [TBL] [Abstract][Full Text] [Related]
6. Highly selective isomerization of cottonseed oil into conjugated linoleic acid catalyzed by multiwalled carbon nanotube supported ruthenium. Liu S; Yu B; Wang Z; Hu J; Fu M; Wang Y; Liu J; Guo Z; Xu X; Ding Y RSC Adv; 2019 Jul; 9(36):20698-20705. PubMed ID: 35515563 [TBL] [Abstract][Full Text] [Related]
7. Single-walled carbon nanotube membranes as non-reflective substrates for nanophotonic applications. Zhigunov DM; Shilkin DA; Kokareva NG; Bessonov VO; Dyakov SA; Chermoshentsev DA; Mkrtchyan AA; Gladush YG; Fedyanin AA; Nasibulin AG Nanotechnology; 2021 Feb; 32(9):095206. PubMed ID: 33197904 [TBL] [Abstract][Full Text] [Related]
8. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications. Penza M; Rossi R; Alvisi M; Serra E Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374 [TBL] [Abstract][Full Text] [Related]
9. Influence of catalyst structures on carbon nanotubes growth via methane-CVD. Wang H; Sun L; Wang S; Xiao Z J Nanosci Nanotechnol; 2009 Feb; 9(2):848-52. PubMed ID: 19441406 [TBL] [Abstract][Full Text] [Related]
10. Antimicrobial photodynamic therapy: Single-walled carbon nanotube (SWCNT)-Porphyrin conjugate for visible light mediated inactivation of Staphylococcus aureus. Sah U; Sharma K; Chaudhri N; Sankar M; Gopinath P Colloids Surf B Biointerfaces; 2018 Feb; 162():108-117. PubMed ID: 29190461 [TBL] [Abstract][Full Text] [Related]
11. Can single-walled carbon nanotube diameter be defined by catalyst particle diameter? Diaz MC; Jiang H; Kauppinen E; Sharma R; Balbuena PB J Phys Chem C Nanomater Interfaces; 2019; 123(50):. PubMed ID: 33029278 [TBL] [Abstract][Full Text] [Related]
12. Unzipping of Single-Walled Carbon Nanotube for the Development of Electrocatalytically Active Hybrid Catalyst of Graphitic Carbon and Pd Nanoparticles. Mondal S; Ghosh S; Raj CR ACS Omega; 2018 Jan; 3(1):622-630. PubMed ID: 31457918 [TBL] [Abstract][Full Text] [Related]
13. Electrocatalytic oxidation of ethylene glycol on Pt and Pt-Ru nanoparticles modified multi-walled carbon nanotubes. Selvaraj V; Vinoba M; Alagar M J Colloid Interface Sci; 2008 Jun; 322(2):537-44. PubMed ID: 18402968 [TBL] [Abstract][Full Text] [Related]
14. A Fundamental Limitation of Small Diameter Single-Walled Carbon Nanotube Synthesis-A Scaling Rule of the Carbon Nanotube Yield with Catalyst Volume. Sakurai S; Inaguma M; Futaba DN; Yumura M; Hata K Materials (Basel); 2013 Jul; 6(7):2633-2641. PubMed ID: 28811399 [TBL] [Abstract][Full Text] [Related]
15. Single-walled carbon nanotubes of controlled diameter and bundle size and their field emission properties. Zhang L; Balzano L; Resasco DE J Phys Chem B; 2005 Aug; 109(30):14375-81. PubMed ID: 16852808 [TBL] [Abstract][Full Text] [Related]
16. Noncovalent Ruthenium(II) Complexes-Single-Walled Carbon Nanotube Composites for Bimodal Photothermal and Photodynamic Therapy with Near-Infrared Irradiation. Zhang P; Huang H; Huang J; Chen H; Wang J; Qiu K; Zhao D; Ji L; Chao H ACS Appl Mater Interfaces; 2015 Oct; 7(41):23278-90. PubMed ID: 26430876 [TBL] [Abstract][Full Text] [Related]
17. An Efficient and Reusable Embedded Ru Catalyst for the Hydrogenolysis of Levulinic Acid to γ-Valerolactone. Wei Z; Lou J; Su C; Guo D; Liu Y; Deng S ChemSusChem; 2017 Apr; 10(8):1720-1732. PubMed ID: 28328085 [TBL] [Abstract][Full Text] [Related]
18. Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature. Günbatar S; Aygun A; Karataş Y; Gülcan M; Şen F J Colloid Interface Sci; 2018 Nov; 530():321-327. PubMed ID: 29982024 [TBL] [Abstract][Full Text] [Related]
19. Effect of sulfuric acid on textural properties and catalytic performance of ruthenium-containing ordered mesoporous carbon prepared via a direct RuCl3/SBA-15 hard templated method. Lan G; Tang H; Liu H; Ni J; Li Y J Nanosci Nanotechnol; 2014 Sep; 14(9):7131-8. PubMed ID: 25924381 [TBL] [Abstract][Full Text] [Related]