These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 35250594)
1. Emerging Bismuth Chalcogenides Based Nanodrugs for Cancer Radiotherapy. Huang J; Huang Q; Liu M; Chen Q; Ai K Front Pharmacol; 2022; 13():844037. PubMed ID: 35250594 [TBL] [Abstract][Full Text] [Related]
2. Strategies based on metal-based nanoparticles for hypoxic-tumor radiotherapy. Zhang C; Yan L; Gu Z; Zhao Y Chem Sci; 2019 Aug; 10(29):6932-6943. PubMed ID: 31588260 [TBL] [Abstract][Full Text] [Related]
3. Intelligent protein-coated bismuth sulfide and manganese oxide nanocomposites obtained by biomineralization for multimodal imaging-guided enhanced tumor therapy. Zhang L; Chen Q; Zou X; Chen J; Hu L; Dong Z; Zhou J; Chen Y; Liu Z; Cheng L J Mater Chem B; 2019 Sep; 7(34):5170-5181. PubMed ID: 31384859 [TBL] [Abstract][Full Text] [Related]
4. 3-Bromopyruvate-loaded bismuth sulfide nanospheres improve cancer treatment by synergizing radiotherapy with modulation of tumor metabolism. He Y; Chen H; Li W; Xu L; Yao H; Cao Y; Wang Z; Zhang L; Wang D; Zhou D J Nanobiotechnology; 2023 Jul; 21(1):209. PubMed ID: 37408010 [TBL] [Abstract][Full Text] [Related]
5. Nanozyme-Incorporated Biodegradable Bismuth Mesoporous Radiosensitizer for Tumor Microenvironment-Modulated Hypoxic Tumor Thermoradiotherapy. Zhang J; Liu Y; Wang X; Du J; Song K; Li B; Chang H; Ouyang R; Miao Y; Sun Y; Li Y ACS Appl Mater Interfaces; 2020 Dec; 12(52):57768-57781. PubMed ID: 33326213 [TBL] [Abstract][Full Text] [Related]
6. BiO Liu H; Cheng R; Dong X; Zhu S; Zhou R; Yan L; Zhang C; Wang Q; Gu Z; Zhao Y Inorg Chem; 2020 Mar; 59(6):3482-3493. PubMed ID: 31990186 [TBL] [Abstract][Full Text] [Related]
7. Biodegradable BiOCl platform for oxidative stress injury-enhanced chemodynamic/radiation therapy of hypoxic tumors. Liu Y; Zhang J; Du J; Song K; Liu J; Wang X; Li B; Ouyang R; Miao Y; Sun Y; Li Y Acta Biomater; 2021 Jul; 129():280-292. PubMed ID: 34033970 [TBL] [Abstract][Full Text] [Related]
8. Tumor microenvironment-manipulated radiocatalytic sensitizer based on bismuth heteropolytungstate for radiotherapy enhancement. Zhou R; Wang H; Yang Y; Zhang C; Dong X; Du J; Yan L; Zhang G; Gu Z; Zhao Y Biomaterials; 2019 Jan; 189():11-22. PubMed ID: 30384125 [TBL] [Abstract][Full Text] [Related]
9. Application of nanomedicine in radiotherapy sensitization. Song X; Sun Z; Li L; Zhou L; Yuan S Front Oncol; 2023; 13():1088878. PubMed ID: 36874097 [TBL] [Abstract][Full Text] [Related]
10. Novel Implications of Nanoparticle-Enhanced Radiotherapy and Brachytherapy: Z-Effect and Tumor Hypoxia. Zhou R; Zhao D; Beeraka NM; Wang X; Lu P; Song R; Chen K; Liu J Metabolites; 2022 Oct; 12(10):. PubMed ID: 36295845 [TBL] [Abstract][Full Text] [Related]
11. Emerging Nanotechnology and Advanced Materials for Cancer Radiation Therapy. Song G; Cheng L; Chao Y; Yang K; Liu Z Adv Mater; 2017 Aug; 29(32):. PubMed ID: 28643452 [TBL] [Abstract][Full Text] [Related]
12. An intratumoral injectable nanozyme hydrogel for hypoxia-resistant thermoradiotherapy. Wang Z; Zeng W; Chen Z; Suo W; Quan H; Tan ZJ Colloids Surf B Biointerfaces; 2021 Nov; 207():112026. PubMed ID: 34384974 [TBL] [Abstract][Full Text] [Related]
13. Nanodrugs alleviate acute kidney injury: Manipulate RONS at kidney. Chen Q; Nan Y; Yang Y; Xiao Z; Liu M; Huang J; Xiang Y; Long X; Zhao T; Wang X; Huang Q; Ai K Bioact Mater; 2023 Apr; 22():141-167. PubMed ID: 36203963 [TBL] [Abstract][Full Text] [Related]
14. Hypoxia-responsive lipid-poly-(hypoxic radiosensitized polyprodrug) nanoparticles for glioma chemo- and radiotherapy. Hua L; Wang Z; Zhao L; Mao H; Wang G; Zhang K; Liu X; Wu D; Zheng Y; Lu J; Yu R; Liu H Theranostics; 2018; 8(18):5088-5105. PubMed ID: 30429888 [TBL] [Abstract][Full Text] [Related]
15. Gold-iron selenide nanocomposites for amplified tumor oxidative stress-augmented photo-radiotherapy. Lu J; Guo Z; Xie W; Chi Y; Zhang J; Xu W; Guo X; Ye J; Wei Y; Wu H; Yu J; Huang YF; Zhao L Biomater Sci; 2021 Jun; 9(11):3979-3988. PubMed ID: 34085077 [TBL] [Abstract][Full Text] [Related]
16. Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: Where do we stand? Yuan CS; Deng ZW; Qin D; Mu YZ; Chen XG; Liu Y Acta Biomater; 2021 Apr; 125():1-28. PubMed ID: 33639310 [TBL] [Abstract][Full Text] [Related]
17. Hypoxia-Targeting, Tumor Microenvironment Responsive Nanocluster Bomb for Radical-Enhanced Radiotherapy. Huo D; Liu S; Zhang C; He J; Zhou Z; Zhang H; Hu Y ACS Nano; 2017 Oct; 11(10):10159-10174. PubMed ID: 28992409 [TBL] [Abstract][Full Text] [Related]
18. Nucleus-Targeting Phototherapy Nanodrugs for High-Effective Anti-Cancer Treatment. Long X; Zhang X; Chen Q; Liu M; Xiang Y; Yang Y; Xiao Z; Huang J; Wang X; Liu C; Nan Y; Huang Q Front Pharmacol; 2022; 13():905375. PubMed ID: 35645841 [TBL] [Abstract][Full Text] [Related]
19. Design and Functionalization of the NIR-Responsive Photothermal Semiconductor Nanomaterials for Cancer Theranostics. Huang X; Zhang W; Guan G; Song G; Zou R; Hu J Acc Chem Res; 2017 Oct; 50(10):2529-2538. PubMed ID: 28972736 [TBL] [Abstract][Full Text] [Related]
20. Self-Assembling Proteins for Design of Anticancer Nanodrugs. Zou Q; Chang R; Yan X Chem Asian J; 2020 May; 15(9):1405-1419. PubMed ID: 32147947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]