BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

963 related articles for article (PubMed ID: 35251161)

  • 1. Predicting Chronic Kidney Disease Using Hybrid Machine Learning Based on Apache Spark.
    Abdel-Fattah MA; Othman NA; Goher N
    Comput Intell Neurosci; 2022; 2022():9898831. PubMed ID: 35251161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Hybrid Model for the Prediction of Chronic Kidney Disease.
    Khalid H; Khan A; Zahid Khan M; Mehmood G; Shuaib Qureshi M
    Comput Intell Neurosci; 2023; 2023():9266889. PubMed ID: 36959840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing Multiagent E-Learning System-Based Machine Learning and Feature Selection Techniques.
    Hessen SH; Abdul-Kader HM; Khedr AE; Salem RK
    Comput Intell Neurosci; 2022; 2022():2941840. PubMed ID: 35140765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian Optimization with Support Vector Machine Model for Parkinson Disease Classification.
    Elshewey AM; Shams MY; El-Rashidy N; Elhady AM; Shohieb SM; Tarek Z
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft Clustering for Enhancing the Diagnosis of Chronic Diseases over Machine Learning Algorithms.
    Aldhyani THH; Alshebami AS; Alzahrani MY
    J Healthc Eng; 2020; 2020():4984967. PubMed ID: 32211144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of supervised machine learning classification techniques in prediction of locoregional recurrences in early oral tongue cancer.
    Alabi RO; Elmusrati M; Sawazaki-Calone I; Kowalski LP; Haglund C; Coletta RD; Mäkitie AA; Salo T; Almangush A; Leivo I
    Int J Med Inform; 2020 Apr; 136():104068. PubMed ID: 31923822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnosis of Chronic Kidney Disease Using Effective Classification Algorithms and Recursive Feature Elimination Techniques.
    Senan EM; Al-Adhaileh MH; Alsaade FW; Aldhyani THH; Alqarni AA; Alsharif N; Uddin MI; Alahmadi AH; Jadhav ME; Alzahrani MY
    J Healthc Eng; 2021; 2021():1004767. PubMed ID: 34211680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Highly Discriminative Hybrid Feature Selection Algorithm for Cancer Diagnosis.
    Elemam T; Elshrkawey M
    ScientificWorldJournal; 2022; 2022():1056490. PubMed ID: 35983572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Score and Correlation Coefficient-Based Feature Selection for Predicting Heart Failure Diagnosis by Using Machine Learning Algorithms.
    Senan EM; Abunadi I; Jadhav ME; Fati SM
    Comput Math Methods Med; 2021; 2021():8500314. PubMed ID: 34966445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breast cancer prediction with transcriptome profiling using feature selection and machine learning methods.
    Taghizadeh E; Heydarheydari S; Saberi A; JafarpoorNesheli S; Rezaeijo SM
    BMC Bioinformatics; 2022 Oct; 23(1):410. PubMed ID: 36183055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of machine learning algorithms in predicting HIV infection among men who have sex with men: Model development and validation.
    He J; Li J; Jiang S; Cheng W; Jiang J; Xu Y; Yang J; Zhou X; Chai C; Wu C
    Front Public Health; 2022; 10():967681. PubMed ID: 36091522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance Analysis of Conventional Machine Learning Algorithms for Identification of Chronic Kidney Disease in Type 1 Diabetes Mellitus Patients.
    Chowdhury NH; Reaz MBI; Haque F; Ahmad S; Ali SHM; A Bakar AA; Bhuiyan MAS
    Diagnostics (Basel); 2021 Dec; 11(12):. PubMed ID: 34943504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust biomarker screening from gene expression data by stable machine learning-recursive feature elimination methods.
    Li L; Ching WK; Liu ZP
    Comput Biol Chem; 2022 Oct; 100():107747. PubMed ID: 35932551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Prediction of Missed Clinical Appointment Using Machine Learning.
    Qureshi Z; Maqbool A; Mirza A; Iqbal MZ; Afzal F; Kanubala DD; Rana T; Umair MY; Wakeel A; Shah SK
    Comput Math Methods Med; 2021; 2021():2376391. PubMed ID: 34721656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Tri-Stage Wrapper-Filter Feature Selection Framework for Disease Classification.
    Mandal M; Singh PK; Ijaz MF; Shafi J; Sarkar R
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Approaches to Predict Chronic Lower Back Pain in People Aged over 50 Years.
    Shim JG; Ryu KH; Cho EA; Ahn JH; Kim HK; Lee YJ; Lee SH
    Medicina (Kaunas); 2021 Nov; 57(11):. PubMed ID: 34833448
    [No Abstract]   [Full Text] [Related]  

  • 17. Performance analysis and prediction of type 2 diabetes mellitus based on lifestyle data using machine learning approaches.
    Ganie SM; Malik MB; Arif T
    J Diabetes Metab Disord; 2022 Jun; 21(1):339-352. PubMed ID: 35673418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Classification Success Rates of Different Machine Learning Algorithms in the Diagnosis of Breast Cancer.
    Ozcan I; Aydin H; Cetinkaya A
    Asian Pac J Cancer Prev; 2022 Oct; 23(10):3287-3297. PubMed ID: 36308351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting Brain Tumor using Machines Learning Techniques Based on Different Features Extracting Strategies.
    Hussain L; Saeed S; Awan IA; Idris A; Nadeem MSA; Chaudhry QU
    Curr Med Imaging Rev; 2019; 15(6):595-606. PubMed ID: 32008569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Model for Coronary Artery Disease Diagnosis: A Comparative Study of Several Machine Learning Algorithms.
    Garavand A; Salehnasab C; Behmanesh A; Aslani N; Zadeh AH; Ghaderzadeh M
    J Healthc Eng; 2022; 2022():5359540. PubMed ID: 36304749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.