BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35251350)

  • 1. Inhibiting mutant KRAS G12D gene expression using novel peptide nucleic acid-based antisense: A potential new drug candidate for pancreatic cancer.
    Shai A; Galouk E; Miari R; Tareef H; Sammar M; Zeidan M; Rayan A; Falah M
    Oncol Lett; 2022 Apr; 23(4):130. PubMed ID: 35251350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription inhibition of oncogenic KRAS by a mutation-selective peptide nucleic acid conjugated to the PKKKRKV nuclear localization signal peptide.
    Cogoi S; Codognotto A; Rapozzi V; Meeuwenoord N; van der Marel G; Xodo LE
    Biochemistry; 2005 Aug; 44(31):10510-9. PubMed ID: 16060660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Methodology for Rapid Detection of KRAS Mutation Using PNA-LNA Mediated Loop-Mediated Isothermal Amplification.
    Itonaga M; Matsuzaki I; Warigaya K; Tamura T; Shimizu Y; Fujimoto M; Kojima F; Ichinose M; Murata S
    PLoS One; 2016; 11(3):e0151654. PubMed ID: 26999437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging endogenous gene expression in brain cancer in vivo with 111In-peptide nucleic acid antisense radiopharmaceuticals and brain drug-targeting technology.
    Suzuki T; Wu D; Schlachetzki F; Li JY; Boado RJ; Pardridge WM
    J Nucl Med; 2004 Oct; 45(10):1766-75. PubMed ID: 15471847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide nucleic acids (PNAs) antisense effect to bacterial growth and their application potentiality in biotechnology.
    Hatamoto M; Ohashi A; Imachi H
    Appl Microbiol Biotechnol; 2010 Mar; 86(2):397-402. PubMed ID: 20135118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of gene expression inside cells by peptide nucleic acids: effect of mRNA target sequence, mismatched bases, and PNA length.
    Doyle DF; Braasch DA; Simmons CG; Janowski BA; Corey DR
    Biochemistry; 2001 Jan; 40(1):53-64. PubMed ID: 11141056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiohybridization PET imaging of KRAS G12D mRNA expression in human pancreas cancer xenografts with [(64)Cu]DO3A-peptide nucleic acid-peptide nanoparticles.
    Chakrabarti A; Zhang K; Aruva MR; Cardi CA; Opitz AW; Wagner NJ; Thakur ML; Wickstrom E
    Cancer Biol Ther; 2007 Jun; 6(6):948-56. PubMed ID: 17611392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide nucleic acid (PNA) cell penetrating peptide (CPP) conjugates as carriers for cellular delivery of antisense oligomers.
    Shiraishi T; Nielsen PE
    Artif DNA PNA XNA; 2011; 2(3):90-9. PubMed ID: 22567192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antisense peptide nucleic acids conjugated to somatostatin analogs and targeted at the n-myc oncogene display enhanced cytotoxity to human neuroblastoma IMR32 cells expressing somatostatin receptors.
    Sun L; Fuselier JA; Murphy WA; Coy DH
    Peptides; 2002 Sep; 23(9):1557-65. PubMed ID: 12217415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple mechanisms involved in a low concentration of FL118 enhancement of AMR-MeOAc to induce pancreatic cancer cell apoptosis and growth inhibition.
    Rabi T; Li F
    Am J Cancer Res; 2018; 8(11):2267-2283. PubMed ID: 30555743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, synthesis, and evaluation of purine and pyrimidine-based
    Park SY; Gowda Saralamma VV; Nale SD; Kim CJ; Jo YS; Baig MH; Cho J
    Heliyon; 2024 Apr; 10(7):e28495. PubMed ID: 38617914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Gene Therapy of Pancreatic Cancer via a Peptide Nucleic Acid (PNA)-Loaded Layered Double Hydroxides (LDH) Nanoplatform.
    Yu Z; Hu P; Xu Y; Bao Q; Ni D; Wei C; Shi J
    Small; 2020 Jun; 16(23):e1907233. PubMed ID: 32406198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rottlerin suppresses growth of human pancreatic tumors in nude mice, and pancreatic cancer cells isolated from Kras(G12D) mice.
    Huang M; Tang SN; Upadhyay G; Marsh JL; Jackman CP; Srivastava RK; Shankar S
    Cancer Lett; 2014 Oct; 353(1):32-40. PubMed ID: 25050737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. External imaging of CCND1, MYC, and KRAS oncogene mRNAs with tumor-targeted radionuclide-PNA-peptide chimeras.
    Tian X; Chakrabarti A; Amirkhanov NV; Aruva MR; Zhang K; Mathew B; Cardi C; Qin W; Sauter ER; Thakur ML; Wickstrom E
    Ann N Y Acad Sci; 2005 Nov; 1059():106-44. PubMed ID: 16382049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting RNA polymerase primary σ70 as a therapeutic strategy against methicillin-resistant Staphylococcus aureus by antisense peptide nucleic acid.
    Bai H; Sang G; You Y; Xue X; Zhou Y; Hou Z; Meng J; Luo X
    PLoS One; 2012; 7(1):e29886. PubMed ID: 22253815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of mdm2 pre-mRNA splicing by 9-aminoacridine-PNA (peptide nucleic acid) conjugates targeting intron-exon junctions.
    Shiraishi T; Eysturskarth J; Nielsen PE
    BMC Cancer; 2010 Jun; 10():342. PubMed ID: 20591158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide nucleic acid (PNA) antisense effects in Escherichia coli.
    Good L; Nielsen PE
    Curr Issues Mol Biol; 1999; 1(1-2):111-6. PubMed ID: 11475695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide nucleic acids: Advanced tools for biomedical applications.
    Gupta A; Mishra A; Puri N
    J Biotechnol; 2017 Oct; 259():148-159. PubMed ID: 28764969
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.