BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 35251377)

  • 1. Downregulation of MicroRNA-1 and Its Potential Molecular Mechanism in Nasopharyngeal Cancer: An Investigation Combined with In Silico and In-House Immunohistochemistry Validation.
    Wen JY; Qin LT; Chen G; Huang HQ; Shen MJ; Pang JS; Tang YX; Lu W; Wang RS; Luo JY
    Dis Markers; 2022; 2022():7962220. PubMed ID: 35251377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA methylation biomarkers for nasopharyngeal carcinoma.
    Han B; Yang X; Zhang P; Zhang Y; Tu Y; He Z; Li Y; Yuan J; Dong Y; Hosseini DK; Zhou T; Sun H
    PLoS One; 2020; 15(4):e0230524. PubMed ID: 32271791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of novel biomarkers and small-molecule compounds for nasopharyngeal carcinoma with metastasis.
    Mi JL; Xu M; Liu C; Wang RS
    Medicine (Baltimore); 2020 Aug; 99(32):e21505. PubMed ID: 32769887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MiR-375: A prospective regulator in medullary thyroid cancer based on microarray data and bioinformatics analyses.
    Shi L; Zhao SM; Luo Y; Zhang AW; Wei LH; Xie ZY; Li YY; Ma W
    Pathol Res Pract; 2017 Nov; 213(11):1344-1354. PubMed ID: 29033189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in silico analysis of dynamic changes in microRNA expression profiles in stepwise development of nasopharyngeal carcinoma.
    Luo Z; Zhang L; Li Z; Li X; Li G; Yu H; Jiang C; Dai Y; Guo X; Xiang J; Li G
    BMC Med Genomics; 2012 Jan; 5():3. PubMed ID: 22260379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening of core genes and prediction of ceRNA regulation mechanism of circRNAs in nasopharyngeal carcinoma by bioinformatics analysis.
    Chen H; Shi X; Ren L; Wan Y; Zhuo H; Zeng L; SangDan W; Wang F
    Pathol Oncol Res; 2023; 29():1610960. PubMed ID: 37056700
    [No Abstract]   [Full Text] [Related]  

  • 7. Down regulation of lactotransferrin enhanced radio-sensitivity of nasopharyngeal carcinoma.
    Qi YF; Yang Y; Zhang Y; Liu S; Luo B; Liu W
    Comput Biol Chem; 2021 Feb; 90():107426. PubMed ID: 33352501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network Pharmacology to Uncover the Molecular Mechanisms of Action of LeiGongTeng for the Treatment of Nasopharyngeal Carcinoma.
    Mi JL; Liu C; Xu M; Wang RS
    Med Sci Monit Basic Res; 2020 May; 26():e923431. PubMed ID: 32448862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of miRNA/mRNA-Negative Regulation Pairs in Nasopharyngeal Carcinoma.
    Liu M; Zhu K; Qian X; Li W
    Med Sci Monit; 2016 Jun; 22():2215-34. PubMed ID: 27350400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentially Infiltrated Identification of Novel Diagnostic Biomarkers Associated with Immune Infiltration in Nasopharyngeal Carcinoma.
    Gao P; Lu W; Hu S; Zhao K
    Dis Markers; 2022; 2022():3934704. PubMed ID: 36438903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated analysis of microRNA regulatory network in nasopharyngeal carcinoma with deep sequencing.
    Wang F; Lu J; Peng X; Wang J; Liu X; Chen X; Jiang Y; Li X; Zhang B
    J Exp Clin Cancer Res; 2016 Jan; 35():17. PubMed ID: 26795575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of miR-452-5p in the tumorigenesis of prostate cancer: A study based on the Cancer Genome Atl(TCGA), Gene Expression Omnibus (GEO), and bioinformatics analysis.
    Gao L; Zhang LJ; Li SH; Wei LL; Luo B; He RQ; Xia S
    Pathol Res Pract; 2018 May; 214(5):732-749. PubMed ID: 29559248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening Key Genes and Biological Pathways in Nasopharyngeal Carcinoma by Integrated Bioinformatics Analysis.
    Tai J; Park J; Han M; Kim TH
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The tumor-suppressive role of microRNA-873 in nasopharyngeal carcinoma correlates with downregulation of ZIC2 and inhibition of AKT signaling pathway.
    Lv B; Li F; Liu X; Lin L
    Cancer Gene Ther; 2021 Feb; 28(1-2):74-88. PubMed ID: 32555352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Downregulated miR-150-5p in the Tissue of Nasopharyngeal Carcinoma.
    Wen JY; Chen G; Li JD; Luo JY; He J; Wang RS; Qin LT
    Genet Res (Camb); 2022; 2022():2485055. PubMed ID: 36118276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prognostic values and prospective pathway signaling of MicroRNA-182 in ovarian cancer: a study based on gene expression omnibus (GEO) and bioinformatics analysis.
    Li Y; Li L
    J Ovarian Res; 2019 Nov; 12(1):106. PubMed ID: 31703725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated analysis of the differential cellular and EBV miRNA expression profiles in microdissected nasopharyngeal carcinoma and non-cancerous nasopharyngeal tissues.
    Wan XX; Yi H; Qu JQ; He QY; Xiao ZQ
    Oncol Rep; 2015 Nov; 34(5):2585-601. PubMed ID: 26330189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explore the shared molecular mechanism between dermatomyositis and nasopharyngeal cancer by bioinformatic analysis.
    Zhong X; Shang J; Zhang R; Zhang X; Yu L; Niu H; Duan X
    PLoS One; 2024; 19(5):e0296034. PubMed ID: 38753689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Key Genes in Nasopharyngeal Carcinoma Based on Bioinformatics Analysis.
    Song Y; Feng T; Cao W; Yu H; Zhang Z
    Comput Intell Neurosci; 2022; 2022():9022700. PubMed ID: 35712071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell Proliferation and Apoptosis-Related Genes Affect the Development of Human Nasopharyngeal Carcinoma Through PI3K/AKT Signaling Pathway.
    Li W; Ma H; Liu M
    Mol Biotechnol; 2021 Nov; 63(11):1081-1091. PubMed ID: 34236626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.