These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 35252149)

  • 21. Micro- and nano-devices for electrochemical sensing.
    Mariani F; Gualandi I; Schuhmann W; Scavetta E
    Mikrochim Acta; 2022 Nov; 189(12):459. PubMed ID: 36416992
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epoxy Chip-in-Carrier Integration and Screen-Printed Metalization for Multichannel Microfluidic Lab-on-CMOS Microsystems.
    Li L; Yin H; Mason AJ
    IEEE Trans Biomed Circuits Syst; 2018 Apr; 12(2):416-425. PubMed ID: 29570067
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic 'brain-on chip' systems to supplement neurological practice: development, applications and considerations.
    Jarrah R; Nathani KR; Bhandarkar S; Ezeudu CS; Nguyen RT; Amare A; Aljameey UA; Jarrah SI; Bhandarkar AR; Fiani B
    Regen Med; 2023 May; 18(5):413-423. PubMed ID: 37125510
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of microfluidic chip technology in pharmaceutical analysis: A review.
    Cui P; Wang S
    J Pharm Anal; 2019 Aug; 9(4):238-247. PubMed ID: 31452961
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advances in microfluidic in vitro systems for neurological disease modeling.
    Holloway PM; Willaime-Morawek S; Siow R; Barber M; Owens RM; Sharma AD; Rowan W; Hill E; Zagnoni M
    J Neurosci Res; 2021 May; 99(5):1276-1307. PubMed ID: 33583054
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advances in TEER measurements of biological barriers in microphysiological systems.
    Nazari H; Shrestha J; Naei VY; Bazaz SR; Sabbagh M; Thiery JP; Warkiani ME
    Biosens Bioelectron; 2023 Aug; 234():115355. PubMed ID: 37159988
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidics for 3D Cell and Tissue Cultures: Microfabricative and Ethical Aspects Updates.
    Limongi T; Guzzi F; Parrotta E; Candeloro P; Scalise S; Lucchino V; Gentile F; Tirinato L; Coluccio ML; Torre B; Allione M; Marini M; Susa F; Fabrizio ED; Cuda G; Perozziello G
    Cells; 2022 May; 11(10):. PubMed ID: 35626736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organ-on-Chip Approaches for Intestinal 3D In Vitro Modeling.
    Pimenta J; Ribeiro R; Almeida R; Costa PF; da Silva MA; Pereira B
    Cell Mol Gastroenterol Hepatol; 2022; 13(2):351-367. PubMed ID: 34454168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic Lab-on-a-Chip for Studies of Cell Migration under Spatial Confinement.
    Sala F; Ficorella C; Osellame R; Käs JA; Martínez Vázquez R
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36004998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bone/cartilage organoid on-chip: Construction strategy and application.
    Hu Y; Zhang H; Wang S; Cao L; Zhou F; Jing Y; Su J
    Bioact Mater; 2023 Jul; 25():29-41. PubMed ID: 37056252
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frugal Approach toward Developing a Biomimetic, Microfluidic Network-on-a-Chip for In Vitro Analysis of Microvascular Physiology.
    Priyadarshani J; Roy T; Das S; Chakraborty S
    ACS Biomater Sci Eng; 2021 Mar; 7(3):1263-1277. PubMed ID: 33555875
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Release and Detection of microRNA by Combining Magnetic Hyperthermia and Electrochemistry Modules on a Microfluidic Chip.
    Horny MC; Dupuis V; Siaugue JM; Gamby J
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33383936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrated lab-on-a-chip devices: Fabrication methodologies, transduction system for sensing purposes.
    Dkhar DS; Kumari R; Malode SJ; Shetti NP; Chandra P
    J Pharm Biomed Anal; 2023 Jan; 223():115120. PubMed ID: 36343538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent developments in organ-on-a-chip technology for cardiovascular disease research.
    Liu Y; Lin L; Qiao L
    Anal Bioanal Chem; 2023 Jul; 415(18):3911-3925. PubMed ID: 36867198
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidics-Based Biomaterials and Biodevices.
    Dong R; Liu Y; Mou L; Deng J; Jiang X
    Adv Mater; 2019 Nov; 31(45):e1805033. PubMed ID: 30345586
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the road to the brain-on-a-chip: a review on strategies, methods, and applications.
    Brofiga M; Pisano M; Raiteri R; Massobrio P
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34280903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidic organoids-on-a-chip: The future of human models.
    Saorin G; Caligiuri I; Rizzolio F
    Semin Cell Dev Biol; 2023 Jul; 144():41-54. PubMed ID: 36241560
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gut-microbiota-on-a-chip: an enabling field for physiological research.
    Trujillo-de Santiago G; Lobo-Zegers MJ; Montes-Fonseca SL; Zhang YS; Alvarez MM
    Microphysiol Syst; 2018 Oct; 2():. PubMed ID: 33954286
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidics-based in vivo mimetic systems for the study of cellular biology.
    Kim D; Wu X; Young AT; Haynes CL
    Acc Chem Res; 2014 Apr; 47(4):1165-73. PubMed ID: 24555566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic Organ-on-a-Chip System for Disease Modeling and Drug Development.
    Li Z; Hui J; Yang P; Mao H
    Biosensors (Basel); 2022 May; 12(6):. PubMed ID: 35735518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.