These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 35252663)
1. Impacts of Proppant Flowback on Fracture Conductivity in Different Fracturing Fluids and Flowback Conditions. Guo S; Wang B; Li Y; Hao H; Zhang M; Liang T ACS Omega; 2022 Mar; 7(8):6682-6690. PubMed ID: 35252663 [TBL] [Abstract][Full Text] [Related]
2. Fracturing-Fluid Flowback Simulation with Consideration of Proppant Transport in Hydraulically Fractured Shale Wells. Wang F; Chen Q; Lyu X; Zhang S ACS Omega; 2020 Apr; 5(16):9491-9502. PubMed ID: 32363301 [TBL] [Abstract][Full Text] [Related]
3. Comparative Experimental Study of Fracture Conductivity of Carbonate Rocks under Different Stimulation Types. Xiao H; Xia X; Wang C; Tan X; Zhang H ACS Omega; 2023 Dec; 8(51):49175-49190. PubMed ID: 38162798 [TBL] [Abstract][Full Text] [Related]
4. Preparation and Properties of Lightweight Amphiphobic Proppant for Hydraulic Fracturing. Wang G; Ma Q; Ren L; Hou J Polymers (Basel); 2024 Sep; 16(18):. PubMed ID: 39339039 [TBL] [Abstract][Full Text] [Related]
5. Field experiments of different fracturing designs in tight conglomerate oil reservoirs. Zhang D; Ma S; Zhang J; Zhu Y; Wang B; Zhu J; Fan X; Yang H; Liang T Sci Rep; 2022 Feb; 12(1):3220. PubMed ID: 35217696 [TBL] [Abstract][Full Text] [Related]
6. A Multiwalled Carbon Nanotube-Based Polyurethane Nanocomposite-Coated Sand/Proppant for Improved Mechanical Strength and Flowback Control in Hydraulic Fracturing Applications. Alzanam AAA; Ishtiaq U; Muhsan AS; Mohamed NM ACS Omega; 2021 Aug; 6(32):20768-20778. PubMed ID: 34423185 [TBL] [Abstract][Full Text] [Related]
7. Fracture Characterization Using Flowback Water Transients from Hydraulically Fractured Shale Gas Wells. Liu H; Hu X; Guo Y; Ma X; Wang F; Chen Q ACS Omega; 2019 Sep; 4(12):14688-14698. PubMed ID: 31552308 [TBL] [Abstract][Full Text] [Related]
8. Study on the Mechanism of Nanoemulsion Removal of Water Locking Damage and Compatibility of Working Fluids in Tight Sandstone Reservoirs. Wang J; Li Y; Zhou F; Yao E; Zhang L; Yang H ACS Omega; 2020 Feb; 5(6):2910-2919. PubMed ID: 32095713 [TBL] [Abstract][Full Text] [Related]
9. Biomimicry Surface-Coated Proppant with Self-Suspending and Targeted Adsorption Ability. Lan W; Niu Y; Sheng M; Lu Z; Yuan Y; Zhang Y; Zhou Y; Xu Q ACS Omega; 2020 Oct; 5(40):25824-25831. PubMed ID: 33073107 [TBL] [Abstract][Full Text] [Related]
10. Investigation of Fracturing Fluid Flowback in Hydraulically Fractured Formations Based on Microscopic Visualization Experiments. Zou G; Pan B; Zhu W; Liu Y; Ma S; Liu M Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987341 [TBL] [Abstract][Full Text] [Related]
11. Experimental Study on the Backflow Mechanism of Proppants in Induced Fractures and Fiber Sand Control Under the Condition of Large-Scale and Fully Measurable Flow Field. Chen Y; Sang Y; Guo J; Yang J; Chen W; Tang B; Feng F; Gou X; Zhang Y ACS Omega; 2023 Nov; 8(45):42467-42478. PubMed ID: 38024756 [TBL] [Abstract][Full Text] [Related]
12. Geochemical and sulfate isotopic evolution of flowback and produced waters reveals water-rock interactions following hydraulic fracturing of a tight hydrocarbon reservoir. Osselin F; Saad S; Nightingale M; Hearn G; Desaulty AM; Gaucher EC; Clarkson CR; Kloppmann W; Mayer B Sci Total Environ; 2019 Oct; 687():1389-1400. PubMed ID: 31412472 [TBL] [Abstract][Full Text] [Related]
13. Machine Learning-Based Propped Fracture Conductivity Correlations of Several Shale Formations. Desouky M; Tariq Z; Aljawad MS; Alhoori H; Mahmoud M; Abdulraheem A ACS Omega; 2021 Jul; 6(29):18782-18792. PubMed ID: 34337218 [TBL] [Abstract][Full Text] [Related]
14. Investigation and Application of High-Efficiency Network Fracturing Technology for Deep Shale Gas in the Southern Sichuan Basin. Zhao Z; Zheng Y; Zeng B; Song Y ACS Omega; 2022 Apr; 7(16):14276-14282. PubMed ID: 35573210 [TBL] [Abstract][Full Text] [Related]
15. Formation damage simulation of a multi-fractured horizontal well in a tight gas/shale oil formation. Bui D; Nguyen T; Nguyen T; Yoo H J Pet Explor Prod Technol; 2023; 13(1):163-184. PubMed ID: 35873790 [TBL] [Abstract][Full Text] [Related]
16. Hydrochemistry, Sources and Management of Fracturing Flowback Fluid in Tight Sandstone Gasfield in Sulige Gasfield (China). Shi H; He X; Zhou C; Wang L; Xiao Y Arch Environ Contam Toxicol; 2023 Feb; 84(2):284-298. PubMed ID: 36737498 [TBL] [Abstract][Full Text] [Related]
17. Experimental Investigation on the Fracture Conductivity Behavior of Quartz Sand and Ceramic Mixed Proppants. Sun H; He B; Xu H; Zhou F; Zhang M; Li H; Yin G; Chen S; Xu X; Li B ACS Omega; 2022 Mar; 7(12):10243-10254. PubMed ID: 35382273 [TBL] [Abstract][Full Text] [Related]
18. Hydraulic fracturing: New uncertainty based modeling approach for process design using Monte Carlo simulation technique. Quosay AA; Knez D; Ziaja J PLoS One; 2020; 15(7):e0236726. PubMed ID: 32726370 [TBL] [Abstract][Full Text] [Related]
19. Influence of Proppant Size on the Proppant Embedment Depth. Ding X; Wang T; Dong M; Chen N ACS Omega; 2022 Oct; 7(39):35044-35054. PubMed ID: 36211084 [TBL] [Abstract][Full Text] [Related]
20. Accurate Prediction of the Proppant Distribution in a Hydraulically Fractured Stage. Alajmei S ACS Omega; 2023 Oct; 8(40):37080-37089. PubMed ID: 37841146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]