BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 35252663)

  • 1. Impacts of Proppant Flowback on Fracture Conductivity in Different Fracturing Fluids and Flowback Conditions.
    Guo S; Wang B; Li Y; Hao H; Zhang M; Liang T
    ACS Omega; 2022 Mar; 7(8):6682-6690. PubMed ID: 35252663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fracturing-Fluid Flowback Simulation with Consideration of Proppant Transport in Hydraulically Fractured Shale Wells.
    Wang F; Chen Q; Lyu X; Zhang S
    ACS Omega; 2020 Apr; 5(16):9491-9502. PubMed ID: 32363301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Experimental Study of Fracture Conductivity of Carbonate Rocks under Different Stimulation Types.
    Xiao H; Xia X; Wang C; Tan X; Zhang H
    ACS Omega; 2023 Dec; 8(51):49175-49190. PubMed ID: 38162798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field experiments of different fracturing designs in tight conglomerate oil reservoirs.
    Zhang D; Ma S; Zhang J; Zhu Y; Wang B; Zhu J; Fan X; Yang H; Liang T
    Sci Rep; 2022 Feb; 12(1):3220. PubMed ID: 35217696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Multiwalled Carbon Nanotube-Based Polyurethane Nanocomposite-Coated Sand/Proppant for Improved Mechanical Strength and Flowback Control in Hydraulic Fracturing Applications.
    Alzanam AAA; Ishtiaq U; Muhsan AS; Mohamed NM
    ACS Omega; 2021 Aug; 6(32):20768-20778. PubMed ID: 34423185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fracture Characterization Using Flowback Water Transients from Hydraulically Fractured Shale Gas Wells.
    Liu H; Hu X; Guo Y; Ma X; Wang F; Chen Q
    ACS Omega; 2019 Sep; 4(12):14688-14698. PubMed ID: 31552308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the Mechanism of Nanoemulsion Removal of Water Locking Damage and Compatibility of Working Fluids in Tight Sandstone Reservoirs.
    Wang J; Li Y; Zhou F; Yao E; Zhang L; Yang H
    ACS Omega; 2020 Feb; 5(6):2910-2919. PubMed ID: 32095713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimicry Surface-Coated Proppant with Self-Suspending and Targeted Adsorption Ability.
    Lan W; Niu Y; Sheng M; Lu Z; Yuan Y; Zhang Y; Zhou Y; Xu Q
    ACS Omega; 2020 Oct; 5(40):25824-25831. PubMed ID: 33073107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of Fracturing Fluid Flowback in Hydraulically Fractured Formations Based on Microscopic Visualization Experiments.
    Zou G; Pan B; Zhu W; Liu Y; Ma S; Liu M
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Study on the Backflow Mechanism of Proppants in Induced Fractures and Fiber Sand Control Under the Condition of Large-Scale and Fully Measurable Flow Field.
    Chen Y; Sang Y; Guo J; Yang J; Chen W; Tang B; Feng F; Gou X; Zhang Y
    ACS Omega; 2023 Nov; 8(45):42467-42478. PubMed ID: 38024756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geochemical and sulfate isotopic evolution of flowback and produced waters reveals water-rock interactions following hydraulic fracturing of a tight hydrocarbon reservoir.
    Osselin F; Saad S; Nightingale M; Hearn G; Desaulty AM; Gaucher EC; Clarkson CR; Kloppmann W; Mayer B
    Sci Total Environ; 2019 Oct; 687():1389-1400. PubMed ID: 31412472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning-Based Propped Fracture Conductivity Correlations of Several Shale Formations.
    Desouky M; Tariq Z; Aljawad MS; Alhoori H; Mahmoud M; Abdulraheem A
    ACS Omega; 2021 Jul; 6(29):18782-18792. PubMed ID: 34337218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation and Application of High-Efficiency Network Fracturing Technology for Deep Shale Gas in the Southern Sichuan Basin.
    Zhao Z; Zheng Y; Zeng B; Song Y
    ACS Omega; 2022 Apr; 7(16):14276-14282. PubMed ID: 35573210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation damage simulation of a multi-fractured horizontal well in a tight gas/shale oil formation.
    Bui D; Nguyen T; Nguyen T; Yoo H
    J Pet Explor Prod Technol; 2023; 13(1):163-184. PubMed ID: 35873790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrochemistry, Sources and Management of Fracturing Flowback Fluid in Tight Sandstone Gasfield in Sulige Gasfield (China).
    Shi H; He X; Zhou C; Wang L; Xiao Y
    Arch Environ Contam Toxicol; 2023 Feb; 84(2):284-298. PubMed ID: 36737498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Investigation on the Fracture Conductivity Behavior of Quartz Sand and Ceramic Mixed Proppants.
    Sun H; He B; Xu H; Zhou F; Zhang M; Li H; Yin G; Chen S; Xu X; Li B
    ACS Omega; 2022 Mar; 7(12):10243-10254. PubMed ID: 35382273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydraulic fracturing: New uncertainty based modeling approach for process design using Monte Carlo simulation technique.
    Quosay AA; Knez D; Ziaja J
    PLoS One; 2020; 15(7):e0236726. PubMed ID: 32726370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Proppant Size on the Proppant Embedment Depth.
    Ding X; Wang T; Dong M; Chen N
    ACS Omega; 2022 Oct; 7(39):35044-35054. PubMed ID: 36211084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate Prediction of the Proppant Distribution in a Hydraulically Fractured Stage.
    Alajmei S
    ACS Omega; 2023 Oct; 8(40):37080-37089. PubMed ID: 37841146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization and Evaluation of Stabilizers for Tight Water-Sensitive Conglomerate Reservoirs.
    Li J; Zhang K; Cheng N; Xing Z; Wang S; Wang B; Liang T
    ACS Omega; 2022 Feb; 7(7):5921-5928. PubMed ID: 35224352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.