These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35252689)

  • 1. Fault Detection of Non-Gaussian and Nonlinear Processes Based on Independent Slow Feature Analysis.
    Li C; Zhou Z; Wen C; Li Z
    ACS Omega; 2022 Mar; 7(8):6978-6990. PubMed ID: 35252689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring Nonlinear and Non-Gaussian Processes Using Gaussian Mixture Model-Based Weighted Kernel Independent Component Analysis.
    Cai L; Tian X; Chen S
    IEEE Trans Neural Netw Learn Syst; 2017 Jan; 28(1):122-135. PubMed ID: 26685274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fault Detection and Isolation of Non-Gaussian and Nonlinear Processes Based on Statistics Pattern Analysis and the
    Zhou Z; Wang J; Yang C; Wen C; Li Z
    ACS Omega; 2022 Jun; 7(22):18623-18637. PubMed ID: 35694521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear Process Fault Diagnosis Based on Serial Principal Component Analysis.
    Deng X; Tian X; Chen S; Harris CJ
    IEEE Trans Neural Netw Learn Syst; 2018 Mar; 29(3):560-572. PubMed ID: 28026785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model Fusion and Multiscale Feature Learning for Fault Diagnosis of Industrial Processes.
    Liu K; Lu N; Wu F; Zhang R; Gao F
    IEEE Trans Cybern; 2023 Oct; 53(10):6465-6478. PubMed ID: 35687638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double-layer ensemble monitoring of non-gaussian processes using modified independent component analysis.
    Tong C; Lan T; Shi X
    ISA Trans; 2017 May; 68():181-188. PubMed ID: 28193441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Nonlinear Support Vector Machine-Based Feature Selection Approach for Fault Detection and Diagnosis: Application to the Tennessee Eastman Process.
    Onel M; Kieslich CA; Pistikopoulos EN
    AIChE J; 2019 Mar; 65(3):992-1005. PubMed ID: 32377021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decentralized adaptively weighted stacked autoencoder-based incipient fault detection for nonlinear industrial processes.
    Gao H; Huang W; Gao X; Han H
    ISA Trans; 2023 Aug; 139():216-228. PubMed ID: 37202232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous Fault Detection and Identification in Continuous Processes via nonlinear Support Vector Machine based Feature Selection.
    Onel M; Kieslich CA; Guzman YA; Pistikopoulos EN
    Int Symp Process Syst Eng; 2018; 44():2077-2082. PubMed ID: 30534633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Batch process fault detection and identification based on discriminant global preserving kernel slow feature analysis.
    Zhang H; Tian X; Deng X; Cao Y
    ISA Trans; 2018 Aug; 79():108-126. PubMed ID: 29776590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear quality-related fault detection using combined deep variational information bottleneck and variational autoencoder.
    Tang P; Peng K; Dong J
    ISA Trans; 2021 Aug; 114():444-454. PubMed ID: 33483094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified kernel principal component analysis using double-weighted local outlier factor and its application to nonlinear process monitoring.
    Deng X; Wang L
    ISA Trans; 2018 Jan; 72():218-228. PubMed ID: 29017769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated Diagnostic Framework for Process and Sensor Faults in Chemical Industry.
    Zhang J; Luo W; Dai Y
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33530519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Unifying Objective Function of Independent Component Analysis for Ordering Sources by Non-Gaussianity.
    Matsuda Y; Yamaguchi K
    IEEE Trans Neural Netw Learn Syst; 2018 Nov; 29(11):5630-5642. PubMed ID: 29993873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fault Detection for Nonlinear Process With Deterministic Disturbances: A Just-In-Time Learning Based Data Driven Method.
    Yin S; Gao H; Qiu J; Kaynak O
    IEEE Trans Cybern; 2017 Nov; 47(11):3649-3657. PubMed ID: 27416612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Spatial-Temporal Variational Graph Attention Autoencoder Using Interactive Information for Fault Detection in Complex Industrial Processes.
    Lv M; Li Y; Liang H; Sun B; Yang C; Gui W
    IEEE Trans Neural Netw Learn Syst; 2024 Mar; 35(3):3062-3076. PubMed ID: 37938955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nonlinear full condition process monitoring method for hot rolling process with dynamic characteristic.
    Zhang C; Peng K; Dong J
    ISA Trans; 2021 Jun; 112():363-372. PubMed ID: 33276968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A latent feature oriented dictionary learning method for closed-loop process monitoring.
    Huang K; Zhang L; Sun B; Liang X; Yang C; Gui W
    ISA Trans; 2022 Dec; 131():552-565. PubMed ID: 35537874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear Chemical Process Fault Diagnosis Using Ensemble Deep Support Vector Data Description.
    Deng X; Zhang Z
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex dynamic process monitoring method based on slow feature analysis model of multi-subspace partitioning.
    Li Z; Yan X
    ISA Trans; 2019 Dec; 95():68-81. PubMed ID: 31151751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.