BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35252849)

  • 1. Segmentation of Lung Nodules on CT Images Using a Nested Three-Dimensional Fully Connected Convolutional Network.
    Kido S; Kidera S; Hirano Y; Mabu S; Kamiya T; Tanaka N; Suzuki Y; Yanagawa M; Tomiyama N
    Front Artif Intell; 2022; 5():782225. PubMed ID: 35252849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid U-Net-based deep learning model for volume segmentation of lung nodules in CT images.
    Wang Y; Zhou C; Chan HP; Hadjiiski LM; Chughtai A; Kazerooni EA
    Med Phys; 2022 Nov; 49(11):7287-7302. PubMed ID: 35717560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of lung nodules segmentation and recognition algorithm based on deep learning.
    Yu H; Li J; Zhang L; Cao Y; Yu X; Sun J
    BMC Bioinformatics; 2021 Nov; 22(Suppl 5):314. PubMed ID: 34749636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boundary Aware Semantic Segmentation using Pyramid-dilated Dense U-Net for Lung Segmentation in Computed Tomography Images.
    Agnes SA
    J Med Phys; 2023; 48(2):161-174. PubMed ID: 37576094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-view secondary input collaborative deep learning for lung nodule 3D segmentation.
    Dong X; Xu S; Liu Y; Wang A; Saripan MI; Li L; Zhang X; Lu L
    Cancer Imaging; 2020 Aug; 20(1):53. PubMed ID: 32738913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A two-stage network with prior knowledge guidance for medullary thyroid carcinoma recognition in ultrasound images.
    Pan L; Cai Y; Lin N; Yang L; Zheng S; Huang L
    Med Phys; 2022 Apr; 49(4):2413-2426. PubMed ID: 35103313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Appraisal of Deep-Learning Techniques on Computer-Aided Lung Cancer Diagnosis with Computed Tomography Screening.
    Agnes SA; Anitha J
    J Med Phys; 2020; 45(2):98-106. PubMed ID: 32831492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient multiscale fully convolutional UNet model for segmentation of 3D lung nodule from CT image.
    Agnes SA; Anitha J
    J Med Imaging (Bellingham); 2022 Sep; 9(5):052402. PubMed ID: 35573467
    [No Abstract]   [Full Text] [Related]  

  • 9. Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models.
    Cascio D; Magro R; Fauci F; Iacomi M; Raso G
    Comput Biol Med; 2012 Nov; 42(11):1098-109. PubMed ID: 23020972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of U-Net++ pulmonary nodule intelligent analysis model based on feature weighted aggregation.
    Yang D; Du J; Liu K; Sui Y; Wang J; Gai X
    Technol Health Care; 2023; 31(S1):477-486. PubMed ID: 37066943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RPLS-Net: pulmonary lobe segmentation based on 3D fully convolutional networks and multi-task learning.
    Liu J; Wang C; Guo J; Shao J; Xu X; Liu X; Li H; Li W; Yi Z
    Int J Comput Assist Radiol Surg; 2021 Jun; 16(6):895-904. PubMed ID: 33846890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning-Based CT Imaging in the Diagnosis of Treatment Effect of Pulmonary Nodules and Radiofrequency Ablation.
    Zhou C; Zhao X; Zhao L; Liu J; Chen Z; Fang S
    Comput Intell Neurosci; 2022; 2022():7326537. PubMed ID: 35996649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volumetric segmentation of ground glass nodule based on 3D attentional cascaded residual U-Net and conditional random field.
    Chen H; Liu J; Lu L; Wang T; Xu X; Chu A; Peng W; Gong J; Tang W; Gu Y
    Med Phys; 2022 Feb; 49(2):1097-1107. PubMed ID: 34951492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate segmentation for different types of lung nodules on CT images using improved U-Net convolutional network.
    Zhang X; Liu X; Zhang B; Dong J; Zhang B; Zhao S; Li S
    Medicine (Baltimore); 2021 Oct; 100(40):e27491. PubMed ID: 34622882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated segmentation and shape-based classification scheme for distinguishing adenocarcinomas from granulomas on lung CT.
    Alilou M; Beig N; Orooji M; Rajiah P; Velcheti V; Rakshit S; Reddy N; Yang M; Jacono F; Gilkeson RC; Linden P; Madabhushi A
    Med Phys; 2017 Jul; 44(7):3556-3569. PubMed ID: 28295386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic segmentation of pulmonary blood vessels and nodules based on local intensity structure analysis and surface propagation in 3D chest CT images.
    Chen B; Kitasaka T; Honma H; Takabatake H; Mori M; Natori H; Mori K
    Int J Comput Assist Radiol Surg; 2012 May; 7(3):465-82. PubMed ID: 21739111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmentation and suppression of pulmonary vessels in low-dose chest CT scans.
    Gu X; Wang J; Zhao J; Li Q
    Med Phys; 2019 Aug; 46(8):3603-3614. PubMed ID: 31240721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulmonary nodule segmentation with CT sample synthesis using adversarial networks.
    Qin Y; Zheng H; Huang X; Yang J; Zhu YM
    Med Phys; 2019 Mar; 46(3):1218-1229. PubMed ID: 30575046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segmentation of pulmonary nodules in CT images based on 3D-UNET combined with three-dimensional conditional random field optimization.
    Wu W; Gao L; Duan H; Huang G; Ye X; Nie S
    Med Phys; 2020 Sep; 47(9):4054-4063. PubMed ID: 32428969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer-aided diagnosis of ground glass pulmonary nodule by fusing deep learning and radiomics features.
    Hu X; Gong J; Zhou W; Li H; Wang S; Wei M; Peng W; Gu Y
    Phys Med Biol; 2021 Mar; 66(6):065015. PubMed ID: 33596552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.