BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35253424)

  • 1. Chemical Structure and Shape Enhance MR Imaging-Guided X-ray Therapy Following Marginative Delivery.
    Wang LC; Chang LC; Su GL; Chang PY; Hsu HF; Lee CL; Li JR; Liao MC; Thangudu S; Treekoon J; Yu CC; Sheu HS; Tu TY; Su WP; Su CH; Yeh CS
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13056-13069. PubMed ID: 35253424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NaCeF
    Zhong X; Wang X; Zhan G; Tang Y; Yao Y; Dong Z; Hou L; Zhao H; Zeng S; Hu J; Cheng L; Yang X
    Nano Lett; 2019 Nov; 19(11):8234-8244. PubMed ID: 31576757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor-specific design of PEGylated gadolinium-based nanoscale particles: Facile synthesis, characterization, and improved magnetic resonance imaging of metastasis lung cancer.
    Sui Y; Li Y; Li Y; Jin H; Zheng Y; Huang W; Chen S
    J Photochem Photobiol B; 2020 Jan; 202():111669. PubMed ID: 31739258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasmall Silica-Based Bismuth Gadolinium Nanoparticles for Dual Magnetic Resonance-Computed Tomography Image Guided Radiation Therapy.
    Detappe A; Thomas E; Tibbitt MW; Kunjachan S; Zavidij O; Parnandi N; Reznichenko E; Lux F; Tillement O; Berbeco R
    Nano Lett; 2017 Mar; 17(3):1733-1740. PubMed ID: 28145723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear rate dependent margination of sphere-like, oblate-like and prolate-like micro-particles within blood flow.
    Ye H; Shen Z; Li Y
    Soft Matter; 2018 Sep; 14(36):7401-7419. PubMed ID: 30187053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatible sphere, square prism and hexagonal rod Gd
    Park SJ; Park JY; Yang HK; Moon BK; Oh J
    Colloids Surf B Biointerfaces; 2018 Dec; 172():224-232. PubMed ID: 30172203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of particle size, density and shape on margination of nanoparticles in microcirculation.
    Toy R; Hayden E; Shoup C; Baskaran H; Karathanasis E
    Nanotechnology; 2011 Mar; 22(11):115101. PubMed ID: 21387846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marginative Delivery-Mediated Extracellular Leakiness and T Cell Infiltration in Lung Metastasis by a Biomimetic Nanoraspberry.
    Shen WT; Hsu RS; Fang JH; Hu PF; Chiang CS; Hu SH
    Nano Lett; 2021 Feb; 21(3):1375-1383. PubMed ID: 33562964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimodal Precision Imaging of Pulmonary Nanoparticle Delivery in Mice: Dynamics of Application, Spatial Distribution, and Dosimetry.
    Yang L; Gradl R; Dierolf M; Möller W; Kutschke D; Feuchtinger A; Hehn L; Donnelley M; Günther B; Achterhold K; Walch A; Stoeger T; Razansky D; Pfeiffer F; Morgan KS; Schmid O
    Small; 2019 Dec; 15(49):e1904112. PubMed ID: 31639283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zwitterionic Gadolinium(III)-Complexed Dendrimer-Entrapped Gold Nanoparticles for Enhanced Computed Tomography/Magnetic Resonance Imaging of Lung Cancer Metastasis.
    Liu J; Xiong Z; Zhang J; Peng C; Klajnert-Maculewicz B; Shen M; Shi X
    ACS Appl Mater Interfaces; 2019 May; 11(17):15212-15221. PubMed ID: 30964632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the 4D composite MR image distortion field associated with tumor motion for MR-guided radiotherapy.
    Stanescu T; Jaffray D
    Med Phys; 2016 Mar; 43(3):1550-62. PubMed ID: 26936738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microparticle shape effects on margination, near-wall dynamics and adhesion in a three-dimensional simulation of red blood cell suspension.
    Vahidkhah K; Bagchi P
    Soft Matter; 2015 Mar; 11(11):2097-109. PubMed ID: 25601616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutathione-Mediated Clearable Nanoparticles Based on Ultrasmall Gd
    Cheng Y; Lu T; Wang Y; Song Y; Wang S; Lu Q; Yang L; Tan F; Li J; Li N
    Mol Pharm; 2019 Aug; 16(8):3489-3501. PubMed ID: 31246475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle design considerations for molecular imaging of apoptosis: Diagnostic, prognostic, and therapeutic value.
    Savla R; Minko T
    Adv Drug Deliv Rev; 2017 Apr; 113():122-140. PubMed ID: 27374457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle-Assisted Scanning Focusing X-Ray Therapy with Needle Beam X Rays.
    Davidson RA; Guo T
    Radiat Res; 2016 Jan; 185(1):87-95. PubMed ID: 26731297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer.
    Wang Z; Qiao R; Tang N; Lu Z; Wang H; Zhang Z; Xue X; Huang Z; Zhang S; Zhang G; Li Y
    Biomaterials; 2017 May; 127():25-35. PubMed ID: 28279919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo targeted delivery of nanoparticles for theranosis.
    Koo H; Huh MS; Sun IC; Yuk SH; Choi K; Kim K; Kwon IC
    Acc Chem Res; 2011 Oct; 44(10):1018-28. PubMed ID: 21851104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical Outcomes of Stereotactic MR-Guided Adaptive Radiation Therapy for High-Risk Lung Tumors.
    Finazzi T; Haasbeek CJA; Spoelstra FOB; Palacios MA; Admiraal MA; Bruynzeel AME; Slotman BJ; Lagerwaard FJ; Senan S
    Int J Radiat Oncol Biol Phys; 2020 Jun; 107(2):270-278. PubMed ID: 32105742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor-targeting CuS nanoparticles for multimodal imaging and guided photothermal therapy of lymph node metastasis.
    Shi H; Yan R; Wu L; Sun Y; Liu S; Zhou Z; He J; Ye D
    Acta Biomater; 2018 May; 72():256-265. PubMed ID: 29588255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery.
    Choi H; Choi SR; Zhou R; Kung HF; Chen IW
    Acad Radiol; 2004 Sep; 11(9):996-1004. PubMed ID: 15350580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.