BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 35253615)

  • 1. Celastrol, a TFEB (transcription factor EB) agonist, is a promising drug candidate for Alzheimer disease.
    Zhang W; Wang J; Yang C
    Autophagy; 2022 Jul; 18(7):1740-1742. PubMed ID: 35253615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Celastrol enhances transcription factor EB (TFEB)-mediated autophagy and mitigates Tau pathology: Implications for Alzheimer's disease therapy.
    Yang C; Su C; Iyaswamy A; Krishnamoorthi SK; Zhu Z; Yang S; Tong BC; Liu J; Sreenivasmurthy SG; Guan X; Kan Y; Wu AJ; Huang AS; Tan J; Cheung K; Song J; Li M
    Acta Pharm Sin B; 2022 Apr; 12(4):1707-1722. PubMed ID: 35847498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation of synaptic activity promotes TFEB-mediated clearance of pathological MAPT/Tau in cellular and mouse models of tauopathies.
    Akwa Y; Di Malta C; Zallo F; Gondard E; Lunati A; Diaz-de-Grenu LZ; Zampelli A; Boiret A; Santamaria S; Martinez-Preciado M; Cortese K; Kordower JH; Matute C; Lozano AM; Capetillo-Zarate E; Vaccari T; Settembre C; Baulieu EE; Tampellini D
    Autophagy; 2023 Feb; 19(2):660-677. PubMed ID: 35867714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroacupuncture ameliorates beta-amyloid pathology and cognitive impairment in Alzheimer disease via a novel mechanism involving activation of TFEB (transcription factor EB).
    Zheng X; Lin W; Jiang Y; Lu K; Wei W; Huo Q; Cui S; Yang X; Li M; Xu N; Tang C; Song JX
    Autophagy; 2021 Nov; 17(11):3833-3847. PubMed ID: 33622188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A small molecule transcription factor EB activator ameliorates beta-amyloid precursor protein and Tau pathology in Alzheimer's disease models.
    Song JX; Malampati S; Zeng Y; Durairajan SSK; Yang CB; Tong BC; Iyaswamy A; Shang WB; Sreenivasmurthy SG; Zhu Z; Cheung KH; Lu JH; Tang C; Xu N; Li M
    Aging Cell; 2020 Feb; 19(2):e13069. PubMed ID: 31858697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decrease of neuronal FKBP4/FKBP52 modulates perinuclear lysosomal positioning and MAPT/Tau behavior during MAPT/Tau-induced proteotoxic stress.
    Chambraud B; Daguinot C; Guillemeau K; Genet M; Dounane O; Meduri G; Poüs C; Baulieu EE; Giustiniani J
    Autophagy; 2021 Nov; 17(11):3491-3510. PubMed ID: 33459145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TFEB in Alzheimer's disease: From molecular mechanisms to therapeutic implications.
    Gu Z; Cao H; Zuo C; Huang Y; Miao J; Song Y; Yang Y; Zhu L; Wang F
    Neurobiol Dis; 2022 Oct; 173():105855. PubMed ID: 36031168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trehalose causes low-grade lysosomal stress to activate TFEB and the autophagy-lysosome biogenesis response.
    Jeong SJ; Stitham J; Evans TD; Zhang X; Rodriguez-Velez A; Yeh YS; Tao J; Takabatake K; Epelman S; Lodhi IJ; Schilling JD; DeBosch BJ; Diwan A; Razani B
    Autophagy; 2021 Nov; 17(11):3740-3752. PubMed ID: 33706671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cargo receptor SQSTM1 ameliorates neurofibrillary tangle pathology and spreading through selective targeting of pathological MAPT (microtubule associated protein tau).
    Xu Y; Zhang S; Zheng H
    Autophagy; 2019 Apr; 15(4):583-598. PubMed ID: 30290707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired TFEB-mediated lysosomal biogenesis promotes the development of pancreatitis in mice and is associated with human pancreatitis.
    Wang S; Ni HM; Chao X; Wang H; Bridges B; Kumer S; Schmitt T; Mareninova O; Gukovskaya A; De Lisle RC; Ballabio A; Pacher P; Ding WX
    Autophagy; 2019 Nov; 15(11):1954-1969. PubMed ID: 30894069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal-targeted TFEB rescues dysfunction of the autophagy-lysosomal pathway and alleviates ischemic injury in permanent cerebral ischemia.
    Liu Y; Xue X; Zhang H; Che X; Luo J; Wang P; Xu J; Xing Z; Yuan L; Liu Y; Fu X; Su D; Sun S; Zhang H; Wu C; Yang J
    Autophagy; 2019 Mar; 15(3):493-509. PubMed ID: 30304977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Qingyangshen mitigates amyloid-β and Tau aggregate defects involving PPARα-TFEB activation in transgenic mice of Alzheimer's disease.
    Iyaswamy A; Krishnamoorthi SK; Zhang H; Sreenivasmurthy SG; Zhu Z; Liu J; Su CF; Guan XJ; Wang ZY; Cheung KH; Song JX; Durairajan SSK; Li M
    Phytomedicine; 2021 Oct; 91():153648. PubMed ID: 34332287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB.
    Polito VA; Li H; Martini-Stoica H; Wang B; Yang L; Xu Y; Swartzlander DB; Palmieri M; di Ronza A; Lee VM; Sardiello M; Ballabio A; Zheng H
    EMBO Mol Med; 2014 Sep; 6(9):1142-60. PubMed ID: 25069841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. mTOR-dependent TFEB activation and TFEB overexpression enhance autophagy-lysosome pathway and ameliorate Alzheimer's disease-like pathology in diabetic encephalopathy.
    Cheng L; Chen Y; Guo D; Zhong Y; Li W; Lin Y; Miao Y
    Cell Commun Signal; 2023 May; 21(1):91. PubMed ID: 37143104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MAPT/Tau accumulation represses autophagy flux by disrupting IST1-regulated ESCRT-III complex formation: a vicious cycle in Alzheimer neurodegeneration.
    Feng Q; Luo Y; Zhang XN; Yang XF; Hong XY; Sun DS; Li XC; Hu Y; Li XG; Zhang JF; Li X; Yang Y; Wang Q; Liu GP; Wang JZ
    Autophagy; 2020 Apr; 16(4):641-658. PubMed ID: 31223056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AMPK-dependent phosphorylation is required for transcriptional activation of TFEB and TFE3.
    Paquette M; El-Houjeiri L; C Zirden L; Puustinen P; Blanchette P; Jeong H; Dejgaard K; Siegel PM; Pause A
    Autophagy; 2021 Dec; 17(12):3957-3975. PubMed ID: 33734022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration.
    Rusmini P; Cortese K; Crippa V; Cristofani R; Cicardi ME; Ferrari V; Vezzoli G; Tedesco B; Meroni M; Messi E; Piccolella M; Galbiati M; Garrè M; Morelli E; Vaccari T; Poletti A
    Autophagy; 2019 Apr; 15(4):631-651. PubMed ID: 30335591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition.
    Song JX; Sun YR; Peluso I; Zeng Y; Yu X; Lu JH; Xu Z; Wang MZ; Liu LF; Huang YY; Chen LL; Durairajan SS; Zhang HJ; Zhou B; Zhang HQ; Lu A; Ballabio A; Medina DL; Guo Z; Li M
    Autophagy; 2016 Aug; 12(8):1372-89. PubMed ID: 27172265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of TFEB acetylation in control of its transcriptional activity and lysosomal function in response to histone deacetylase inhibitors.
    Zhang J; Wang J; Zhou Z; Park JE; Wang L; Wu S; Sun X; Lu L; Wang T; Lin Q; Sze SK; Huang D; Shen HM
    Autophagy; 2018; 14(6):1043-1059. PubMed ID: 30059277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TFEB acetylation promotes lysosome biogenesis and ameliorates Alzheimer's disease-relevant phenotypes in mice.
    Li T; Yin L; Kang X; Xue W; Wang N; Zhang J; Yuan P; Lin L; Li Y
    J Biol Chem; 2022 Dec; 298(12):102649. PubMed ID: 36441024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.