These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 35253653)
1. Delayed luminescence as a tool for detecting oxidative stress in Saccharomyces cerevisiae. Li Q; Tian M; Liu Y; Zheng P; Wang J; Gao P; Li C; Wang B; Tang Q; Zhang X; Wu H Gen Physiol Biophys; 2022 Jan; 41(1):79-86. PubMed ID: 35253653 [TBL] [Abstract][Full Text] [Related]
2. Effect of exogenous hydrogen peroxide on biophoton emission from radish root cells. Rastogi A; Pospísil P Plant Physiol Biochem; 2010; 48(2-3):117-23. PubMed ID: 20106674 [TBL] [Abstract][Full Text] [Related]
3. Preincubation with a low-dose hydrogen peroxide enhances anti-oxidative stress ability of BMSCs. Wang L; Zhang F; Peng W; Zhang J; Dong W; Yuan D; Wang Z; Zheng Y J Orthop Surg Res; 2020 Sep; 15(1):392. PubMed ID: 32907609 [TBL] [Abstract][Full Text] [Related]
4. Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae. Izawa S; Inoue Y; Kimura A FEBS Lett; 1995 Jul; 368(1):73-6. PubMed ID: 7615092 [TBL] [Abstract][Full Text] [Related]
5. Delayed luminescence to monitor growth stages and assess the entropy of Li Q; Wu H; Tian M; Li D; Zheng P; Zhang X; Qing Tang B Heliyon; 2024 Apr; 10(7):e27866. PubMed ID: 38623220 [TBL] [Abstract][Full Text] [Related]
6. Mitochondrial function is required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Grant CM; MacIver FH; Dawes IW FEBS Lett; 1997 Jun; 410(2-3):219-22. PubMed ID: 9237633 [TBL] [Abstract][Full Text] [Related]
7. Endonucleolytic cleavage in the expansion segment 7 of 25S rRNA is an early marker of low-level oxidative stress in yeast. Shedlovskiy D; Zinskie JA; Gardner E; Pestov DG; Shcherbik N J Biol Chem; 2017 Nov; 292(45):18469-18485. PubMed ID: 28939771 [TBL] [Abstract][Full Text] [Related]
8. Quercetin Protects Yeast Saccharomyces cerevisiae pep4 Mutant from Oxidative and Apoptotic Stress and Extends Chronological Lifespan. Alugoju P; Janardhanshetty SS; Subaramanian S; Periyasamy L; Dyavaiah M Curr Microbiol; 2018 May; 75(5):519-530. PubMed ID: 29224051 [TBL] [Abstract][Full Text] [Related]
9. Mitochondria are the main source and one of the targets of Pb (lead)-induced oxidative stress in the yeast Saccharomyces cerevisiae. Sousa CA; Soares EV Appl Microbiol Biotechnol; 2014 Jun; 98(11):5153-60. PubMed ID: 24652061 [TBL] [Abstract][Full Text] [Related]
10. Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae. Salmon TB; Evert BA; Song B; Doetsch PW Nucleic Acids Res; 2004; 32(12):3712-23. PubMed ID: 15254273 [TBL] [Abstract][Full Text] [Related]
11. Growth phase-dependent roles of Sir2 in oxidative stress resistance and chronological lifespan in yeast. Kang WK; Kim YH; Kim BS; Kim JY J Microbiol; 2014 Aug; 52(8):652-8. PubMed ID: 24997552 [TBL] [Abstract][Full Text] [Related]
12. Diauxic shift-induced stress resistance against hydroperoxides in Saccharomyces cerevisiae is not an adaptive stress response and does not depend on functional mitochondria. Maris AF; Assumpção AL; Bonatto D; Brendel M; Henriques JA Curr Genet; 2001 May; 39(3):137-49. PubMed ID: 11409175 [TBL] [Abstract][Full Text] [Related]
13. Aluminum induces oxidative damage in Chen R; Zhu Q; Fang Z; Huang Z; Sun J; Peng M; Shi P Can J Microbiol; 2020 Dec; 66(12):713-722. PubMed ID: 32730711 [TBL] [Abstract][Full Text] [Related]
14. Tolerance to Oxidative Stress in Budding Yeast by Heterologous Expression of Catalases A and T from Debaryomyces hansenii. González J; Castillo R; García-Campos MA; Noriega-Samaniego D; Escobar-Sánchez V; Romero-Aguilar L; Alba-Lois L; Segal-Kischinevzky C Curr Microbiol; 2020 Dec; 77(12):4000-4015. PubMed ID: 33064189 [TBL] [Abstract][Full Text] [Related]
15. Function and expression of flavohemoglobin in Saccharomyces cerevisiae. Evidence for a role in the oxidative stress response. Zhao XJ; Raitt D; V Burke P; Clewell AS; Kwast KE; Poyton RO J Biol Chem; 1996 Oct; 271(41):25131-8. PubMed ID: 8810268 [TBL] [Abstract][Full Text] [Related]
16. Mitochondrial Sco proteins are involved in oxidative stress defense. Ekim Kocabey A; Kost L; Gehlhar M; Rödel G; Gey U Redox Biol; 2019 Feb; 21():101079. PubMed ID: 30593977 [TBL] [Abstract][Full Text] [Related]
17. Hydrogen peroxide prolongs mitotic arrest in a dose dependent manner and independently of the spindle assembly checkpoint activity in Saccharomyces cerevisiae. Atalay PB; Asci O; Kaya FO; Tuna BG Acta Biol Hung; 2017 Dec; 68(4):477-489. PubMed ID: 29262707 [TBL] [Abstract][Full Text] [Related]
18. Reactive oxygen species may influence the heat shock response and stress tolerance in the yeast Saccharomyces cerevisiae. Moraitis C; Curran BP Yeast; 2004 Mar; 21(4):313-23. PubMed ID: 15042591 [TBL] [Abstract][Full Text] [Related]
19. LRRK2, but not pathogenic mutants, protects against H2O2 stress depending on mitochondrial function and endocytosis in a yeast model. Pereira C; Miguel Martins L; Saraiva L Biochim Biophys Acta; 2014 Jun; 1840(6):2025-31. PubMed ID: 24576675 [TBL] [Abstract][Full Text] [Related]
20. Glutathione reductase from Brassica rapa affects tolerance and the redox state but not fermentation ability in response to oxidative stress in genetically modified Saccharomyces cerevisiae. Yoon HS; Shin SY; Kim YS; Kim IS World J Microbiol Biotechnol; 2012 May; 28(5):1901-15. PubMed ID: 22806013 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]