These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 35253653)
21. Quercetin increases oxidative stress resistance and longevity in Saccharomyces cerevisiae. Belinha I; Amorim MA; Rodrigues P; de Freitas V; Moradas-Ferreira P; Mateus N; Costa V J Agric Food Chem; 2007 Mar; 55(6):2446-51. PubMed ID: 17323973 [TBL] [Abstract][Full Text] [Related]
22. The role of the membrane lipid composition in the oxidative stress tolerance of different wine yeasts. Vázquez J; Grillitsch K; Daum G; Mas A; Beltran G; Torija MJ Food Microbiol; 2019 Apr; 78():143-154. PubMed ID: 30497596 [TBL] [Abstract][Full Text] [Related]
23. [Survival and antioxidant defence of the yeast Saccharomyces cerevisiae during starvation and oxidative stress]. Baĭliak MM; Abrat OB; Semchyshyn HM; Lushchak VI Ukr Biokhim Zh (1999); 2005; 77(4):93-8. PubMed ID: 16568609 [TBL] [Abstract][Full Text] [Related]
24. Interaction between the plant ApDef Soares JR; José Tenório de Melo E; da Cunha M; Fernandes KVS; Taveira GB; da Silva Pereira L; Pimenta S; Trindade FG; Regente M; Pinedo M; de la Canal L; Gomes VM; de Oliveira Carvalho A Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt A):3429-3443. PubMed ID: 27614033 [TBL] [Abstract][Full Text] [Related]
25. The H2O2 stimulon in Saccharomyces cerevisiae. Godon C; Lagniel G; Lee J; Buhler JM; Kieffer S; Perrot M; Boucherie H; Toledano MB; Labarre J J Biol Chem; 1998 Aug; 273(35):22480-9. PubMed ID: 9712873 [TBL] [Abstract][Full Text] [Related]
26. Adaptive response of the yeast Saccharomyces cerevisiae to reactive oxygen species: defences, damage and death. Moradas-Ferreira P; Costa V Redox Rep; 2000; 5(5):277-85. PubMed ID: 11145102 [TBL] [Abstract][Full Text] [Related]
27. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Jamieson DJ Yeast; 1998 Dec; 14(16):1511-27. PubMed ID: 9885153 [TBL] [Abstract][Full Text] [Related]
29. Oxidative stress tolerance of a spore clone isolated from Shirakami kodama yeast depends on altered regulation of Msn2 leading to enhanced expression of ROS-degrading enzymes. Nakazawa N; Yanata H; Ito N; Kaneta E; Takahashi K J Gen Appl Microbiol; 2018 Sep; 64(4):149-157. PubMed ID: 29607878 [TBL] [Abstract][Full Text] [Related]
30. Oxidative stress and aging: Learning from yeast lessons. Eleutherio E; Brasil AA; França MB; de Almeida DSG; Rona GB; Magalhães RSS Fungal Biol; 2018 Jun; 122(6):514-525. PubMed ID: 29801796 [TBL] [Abstract][Full Text] [Related]
31. The Saccharomyces cerevisiae Sln1p-Ssk1p two-component system mediates response to oxidative stress and in an oxidant-specific fashion. Singh KK Free Radic Biol Med; 2000 Nov; 29(10):1043-50. PubMed ID: 11084293 [TBL] [Abstract][Full Text] [Related]
32. Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae. Izawa S; Inoue Y; Kimura A Biochem J; 1996 Nov; 320 ( Pt 1)(Pt 1):61-7. PubMed ID: 8947468 [TBL] [Abstract][Full Text] [Related]
33. The role of two putative nitroreductases, Frm2p and Hbn1p, in the oxidative stress response in Saccharomyces cerevisiae. de Oliveira IM; Zanotto-Filho A; Moreira JC; Bonatto D; Henriques JA Yeast; 2010 Feb; 27(2):89-102. PubMed ID: 19904831 [TBL] [Abstract][Full Text] [Related]
34. Relationship between delayed luminescence emission and mitochondrial status in Saccharomyces cerevisiae. Tian M; Li Q; Liu Y; Zheng P; Li D; Zhao Y; Wang B; Li C; Wang J; Gao P; Tang Q; Zhang X; Wu H Sci Rep; 2022 Jan; 12(1):394. PubMed ID: 35013471 [TBL] [Abstract][Full Text] [Related]
35. Svf1 inhibits reactive oxygen species generation and promotes survival under conditions of oxidative stress in Saccharomyces cerevisiae. Brace JL; Vanderweele DJ; Rudin CM Yeast; 2005 Jun; 22(8):641-52. PubMed ID: 16034825 [TBL] [Abstract][Full Text] [Related]
36. Improvement of oxidative stress tolerance in Saccharomyces cerevisiae through global transcription machinery engineering. Zhao H; Li J; Han B; Li X; Chen J J Ind Microbiol Biotechnol; 2014 May; 41(5):869-78. PubMed ID: 24633583 [TBL] [Abstract][Full Text] [Related]
37. Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae. Erjavec N; Nyström T Proc Natl Acad Sci U S A; 2007 Jun; 104(26):10877-81. PubMed ID: 17581878 [TBL] [Abstract][Full Text] [Related]
38. Modulation of the specific glutathionylation of mitochondrial proteins in the yeast Gergondey R; Garcia C; Marchand CH; Lemaire SD; Camadro JM; Auchère F Biochem J; 2017 Mar; 474(7):1175-1193. PubMed ID: 28167699 [TBL] [Abstract][Full Text] [Related]
39. Central roles of iron in the regulation of oxidative stress in the yeast Saccharomyces cerevisiae. Matsuo R; Mizobuchi S; Nakashima M; Miki K; Ayusawa D; Fujii M Curr Genet; 2017 Oct; 63(5):895-907. PubMed ID: 28289833 [TBL] [Abstract][Full Text] [Related]
40. Oxidative stress alleviating potential of galactan exopolysaccharide from Weissella confusa KR780676 in yeast model system. Kavitake D; Veerabhadrappa B; Sudharshan SJ; Kandasamy S; Devi PB; Dyavaiah M; Shetty PH Sci Rep; 2022 Jan; 12(1):1089. PubMed ID: 35058551 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]