These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
549 related articles for article (PubMed ID: 35253724)
1. A blind medical image denoising method with noise generation network. Fu B; Zhang X; Wang L; Ren Y; Thanh DNH J Xray Sci Technol; 2022; 30(3):531-547. PubMed ID: 35253724 [TBL] [Abstract][Full Text] [Related]
2. Probabilistic self-learning framework for low-dose CT denoising. Bai T; Wang B; Nguyen D; Jiang S Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348 [TBL] [Abstract][Full Text] [Related]
3. Learning low-dose CT degradation from unpaired data with flow-based model. Liu X; Liang X; Deng L; Tan S; Xie Y Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375 [TBL] [Abstract][Full Text] [Related]
4. Unpaired low-dose computed tomography image denoising using a progressive cyclical convolutional neural network. Li Q; Li R; Li S; Wang T; Cheng Y; Zhang S; Wu W; Zhao J; Qiang Y; Wang L Med Phys; 2024 Feb; 51(2):1289-1312. PubMed ID: 36841936 [TBL] [Abstract][Full Text] [Related]
6. Low-dose CT denoising with a high-level feature refinement and dynamic convolution network. Yang S; Pu Q; Lei C; Zhang Q; Jeon S; Yang X Med Phys; 2023 Jun; 50(6):3597-3611. PubMed ID: 36542402 [TBL] [Abstract][Full Text] [Related]
7. Domain-adaptive denoising network for low-dose CT via noise estimation and transfer learning. Wang J; Tang Y; Wu Z; Tsui BMW; Chen W; Yang X; Zheng J; Li M Med Phys; 2023 Jan; 50(1):74-88. PubMed ID: 36018732 [TBL] [Abstract][Full Text] [Related]
8. STEDNet: Swin transformer-based encoder-decoder network for noise reduction in low-dose CT. Zhu L; Han Y; Xi X; Fu H; Tan S; Liu M; Yang S; Liu C; Li L; Yan B Med Phys; 2023 Jul; 50(7):4443-4458. PubMed ID: 36708286 [TBL] [Abstract][Full Text] [Related]
9. An unsupervised two-step training framework for low-dose computed tomography denoising. Kim W; Lee J; Choi JH Med Phys; 2024 Feb; 51(2):1127-1144. PubMed ID: 37432026 [TBL] [Abstract][Full Text] [Related]
10. Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information. Tang C; Li J; Wang L; Li Z; Jiang L; Cai A; Zhang W; Liang N; Li L; Yan B Comput Math Methods Med; 2019; 2019():8639825. PubMed ID: 31885686 [TBL] [Abstract][Full Text] [Related]
11. Image denoising by transfer learning of generative adversarial network for dental CT. Hegazy MAA; Cho MH; Lee SY Biomed Phys Eng Express; 2020 Sep; 6(5):055024. PubMed ID: 33444255 [TBL] [Abstract][Full Text] [Related]
12. Adapting low-dose CT denoisers for texture preservation using zero-shot local noise-level matching. Ko Y; Song S; Baek J; Shim H Med Phys; 2024 Jun; 51(6):4181-4200. PubMed ID: 38478305 [TBL] [Abstract][Full Text] [Related]
13. Deep learning-based low-dose CT simulator for non-linear reconstruction methods. Tunissen SAM; Moriakov N; Mikerov M; Smit EJ; Sechopoulos I; Teuwen J Med Phys; 2024 Sep; 51(9):6046-6060. PubMed ID: 38843540 [TBL] [Abstract][Full Text] [Related]
14. Self-adaption and texture generation: A hybrid loss function for low-dose CT denoising. Wang Z; Liu M; Cheng X; Zhu J; Wang X; Gong H; Liu M; Xu L J Appl Clin Med Phys; 2023 Sep; 24(9):e14113. PubMed ID: 37571834 [TBL] [Abstract][Full Text] [Related]
15. A novel denoising method for CT images based on U-net and multi-attention. Zhang J; Niu Y; Shangguan Z; Gong W; Cheng Y Comput Biol Med; 2023 Jan; 152():106387. PubMed ID: 36495750 [TBL] [Abstract][Full Text] [Related]
16. X-ray CT image denoising with MINF: A modularized iterative network framework for data from multiple dose levels. Du Q; Tang Y; Wang J; Hou X; Wu Z; Li M; Yang X; Zheng J Comput Biol Med; 2023 Jan; 152():106419. PubMed ID: 36527781 [TBL] [Abstract][Full Text] [Related]
17. Self-supervised structural similarity-based convolutional neural network for cardiac diffusion tensor image denoising. Yuan N; Wang L; Ye C; Deng Z; Zhang J; Zhu Y Med Phys; 2023 Oct; 50(10):6137-6150. PubMed ID: 36775901 [TBL] [Abstract][Full Text] [Related]
18. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness. Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845 [TBL] [Abstract][Full Text] [Related]
19. Half2Half: deep neural network based CT image denoising without independent reference data. Yuan N; Zhou J; Qi J Phys Med Biol; 2020 Nov; 65(21):215020. PubMed ID: 32707565 [TBL] [Abstract][Full Text] [Related]
20. Direct estimation of the noise power spectrum from patient data to generate synthesized CT noise for denoising network training. Han M; Baek J Med Phys; 2024 Mar; 51(3):1637-1652. PubMed ID: 38289987 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]