BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 35253966)

  • 1. Microfluidic Impedance-Deformability Cytometry for Label-Free Single Neutrophil Mechanophenotyping.
    Petchakup C; Yang H; Gong L; He L; Tay HM; Dalan R; Chung AJ; Li KHH; Hou HW
    Small; 2022 May; 18(18):e2104822. PubMed ID: 35253966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Screening of Urinary Tract Infection Using Microfluidic Inertial-Impedance Cytometry.
    Petchakup C; Chen YYC; Tay HM; Ong HB; Hon PY; De PP; Yeo TW; Li KHH; Vasoo S; Hou HW
    ACS Sens; 2023 Aug; 8(8):3136-3145. PubMed ID: 37477562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biophysical phenotyping of single cells using a differential multiconstriction microfluidic device with self-aligned 3D electrodes.
    Yang D; Zhou Y; Zhou Y; Han J; Ai Y
    Biosens Bioelectron; 2019 May; 133():16-23. PubMed ID: 30903937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extensional-Flow Impedance Cytometer for Contactless and Optics-Free Erythrocyte Deformability Analysis.
    Reale R; De Ninno A; Nepi T; Bisegna P; Caselli F
    IEEE Trans Biomed Eng; 2023 Feb; 70(2):565-572. PubMed ID: 35939464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of microfluidic methods for high-throughput cell deformability measurements.
    Urbanska M; Muñoz HE; Shaw Bagnall J; Otto O; Manalis SR; Di Carlo D; Guck J
    Nat Methods; 2020 Jun; 17(6):587-593. PubMed ID: 32341544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free multidimensional bacterial characterization with an ultrawide detectable concentration range by microfluidic impedance cytometry.
    Chen J; Zhong J; Lei H; Ai Y
    Lab Chip; 2023 Nov; 23(23):5029-5038. PubMed ID: 37909182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cell microfluidic impedance cytometry: from raw signals to cell phenotypes using data analytics.
    Honrado C; Bisegna P; Swami NS; Caselli F
    Lab Chip; 2021 Jan; 21(1):22-54. PubMed ID: 33331376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positional dependence of particles and cells in microfluidic electrical impedance flow cytometry: origin, challenges and opportunities.
    Daguerre H; Solsona M; Cottet J; Gauthier M; Renaud P; Bolopion A
    Lab Chip; 2020 Oct; 20(20):3665-3689. PubMed ID: 32914827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous microfluidic 3D focusing enabling microflow cytometry for single-cell analysis.
    Yan S; Yuan D
    Talanta; 2021 Jan; 221():121401. PubMed ID: 33076055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An adaptive three-dimensional hydrodynamic focusing microfluidic impedance flow cytometer.
    Zhou Y; Wang J; Liu T; Wu M; Lan Y; Jia C; Zhao J
    Analyst; 2023 Jul; 148(14):3239-3246. PubMed ID: 37341575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibody-functionalized aluminum oxide-coated particles targeting neutrophil receptors in a multifrequency microfluidic impedance cytometer.
    Ashley BK; Sui J; Javanmard M; Hassan U
    Lab Chip; 2022 Aug; 22(16):3055-3066. PubMed ID: 35851596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing signals of microfluidic impedance cytometry through optimization of microelectrode array.
    Zhou C; Shen H; Feng H; Yan Z; Ji B; Yuan X; Zhang R; Chang H
    Electrophoresis; 2022 Nov; 43(21-22):2156-2164. PubMed ID: 35305273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-Free Multivariate Biophysical Phenotyping-Activated Acoustic Sorting at the Single-Cell Level.
    Li P; Ai Y
    Anal Chem; 2021 Mar; 93(8):4108-4117. PubMed ID: 33599494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization.
    Chen J; Xue C; Zhao Y; Chen D; Wu MH; Wang J
    Int J Mol Sci; 2015 Apr; 16(5):9804-30. PubMed ID: 25938973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impedance-Based Multimodal Electrical-Mechanical Intrinsic Flow Cytometry.
    Feng Y; Zhu J; Chai H; He W; Huang L; Wang W
    Small; 2023 Nov; 19(45):e2303416. PubMed ID: 37438542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review on Microfluidics-Based Impedance Biosensors.
    Chen YS; Huang CH; Pai PC; Seo J; Lei KF
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-Free and Simultaneous Mechanical and Electrical Characterization of Single Plant Cells Using Microfluidic Impedance Flow Cytometry.
    Han Z; Chen L; Zhang S; Wang J; Duan X
    Anal Chem; 2020 Nov; 92(21):14568-14575. PubMed ID: 32911928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic impedance cytometry for single-cell sensing: Review on electrode configurations.
    Zhu S; Zhang X; Zhou Z; Han Y; Xiang N; Ni Z
    Talanta; 2021 Oct; 233():122571. PubMed ID: 34215067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances in Electrical Impedance Sensing Technology for Single-Cell Analysis.
    Zhang Z; Huang X; Liu K; Lan T; Wang Z; Zhu Z
    Biosensors (Basel); 2021 Nov; 11(11):. PubMed ID: 34821686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic impedance-based flow cytometry.
    Cheung KC; Di Berardino M; Schade-Kampmann G; Hebeisen M; Pierzchalski A; Bocsi J; Mittag A; Tárnok A
    Cytometry A; 2010 Jul; 77(7):648-66. PubMed ID: 20583276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.