These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35254004)

  • 21. Bioinspired holographically featured superhydrophobic and supersticky nanostructured materials.
    Park SG; Moon JH; Lee SK; Shim J; Yang SM
    Langmuir; 2010 Feb; 26(3):1468-72. PubMed ID: 19928976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Defect by design: Harnessing the "petal effect" for advanced hydrophobic surface applications.
    Mo M; Bai X; Liu Z; Huang Z; Xu M; Ma L; Lai W; Mo Q; Xie S; Li Y; Huang Y; Xiao N; Zheng Y
    J Colloid Interface Sci; 2024 Nov; 673():37-48. PubMed ID: 38875796
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent developments in bio-inspired special wettability.
    Liu K; Yao X; Jiang L
    Chem Soc Rev; 2010 Aug; 39(8):3240-55. PubMed ID: 20589267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superhydrophobic surfaces: From nature to biomimetic through VOF simulation.
    Liu C; Zhu L; Bu W; Liang Y
    Micron; 2018 Apr; 107():94-100. PubMed ID: 29482103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioinspired nanoparticle spray-coating for superhydrophobic flexible materials with oil/water separation capabilities.
    Geraldi NR; Dodd LE; Xu BB; Wood D; Wells GG; McHale G; Newton MI
    Bioinspir Biomim; 2018 Feb; 13(2):024001. PubMed ID: 29239856
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From natural to biomimetic: The superhydrophobicity and the contact time.
    Liang YH; Peng J; Li XJ; Xu JK; Zhang ZH; Ren LQ
    Microsc Res Tech; 2016 Aug; 79(8):712-20. PubMed ID: 27252147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Droplet detachment by air flow for microstructured superhydrophobic surfaces.
    Hao P; Lv C; Yao Z
    Langmuir; 2013 Apr; 29(17):5160-6. PubMed ID: 23557076
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) - new design principles for biomimetic materials.
    Schulte AJ; Droste DM; Koch K; Barthlott W
    Beilstein J Nanotechnol; 2011; 2():228-36. PubMed ID: 21977435
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-cleaning efficiency of artificial superhydrophobic surfaces.
    Bhushan B; Jung YC; Koch K
    Langmuir; 2009 Mar; 25(5):3240-8. PubMed ID: 19239196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A gecko skin micro/nano structure - A low adhesion, superhydrophobic, anti-wetting, self-cleaning, biocompatible, antibacterial surface.
    Watson GS; Green DW; Schwarzkopf L; Li X; Cribb BW; Myhra S; Watson JA
    Acta Biomater; 2015 Jul; 21():109-22. PubMed ID: 25772496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical explanation of the photoswitchable superhydrophobicity of diarylethene microcrystalline surfaces.
    Nishikawa N; Mayama H; Nonomura Y; Fujinaga N; Yokojima S; Nakamura S; Uchida K
    Langmuir; 2014 Sep; 30(35):10643-50. PubMed ID: 25111681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of the Lotus Effect on Solid Surfaces by Machine Learning.
    He X; Zhang K; Xiong X; Li Y; Wan X; Chen Z; Wang Y; Xu X; Liu M; Jiang Y; Wang S
    Small; 2022 Oct; 18(41):e2203264. PubMed ID: 36070429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nature inspired structured surfaces for biomedical applications.
    Webb HK; Hasan J; Truong VK; Crawford RJ; Ivanova EP
    Curr Med Chem; 2011; 18(22):3367-75. PubMed ID: 21728964
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a Coating-Less Aluminum Superhydrophobic Gradient for Spontaneous Water Droplet Motion Using One-Step Laser-Ablation.
    Misiiuk K; Lowrey S; Blaikie R; Juras J; Sommers A
    Langmuir; 2022 Feb; 38(6):1954-1965. PubMed ID: 35113579
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomimetic fabrication of lotus-leaf-like structured polyaniline film with stable superhydrophobic and conductive properties.
    Qu M; Zhao G; Cao X; Zhang J
    Langmuir; 2008 Apr; 24(8):4185-9. PubMed ID: 18324852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.
    Xu W; Leeladhar R; Kang YT; Choi CH
    Langmuir; 2013 May; 29(20):6032-41. PubMed ID: 23656600
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Salvinia-Effect-Inspired "Sticky" Superhydrophobic Surfaces by Meniscus-Confined Electrodeposition.
    Zheng D; Jiang Y; Yu W; Jiang X; Zhao X; Choi CH; Sun G
    Langmuir; 2017 Nov; 33(47):13640-13648. PubMed ID: 29096056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adhesion behaviors of water droplets on bioinspired superhydrophobic surfaces.
    Xu P; Zhang Y; Li L; Lin Z; Zhu B; Chen W; Li G; Liu H; Xiao K; Xiong Y; Yang S; Lei Y; Xue L
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35561670
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnetic-Responsive Superhydrophobic Surface of Magnetorheological Elastomers Mimicking from Lotus Leaves to Rose Petals.
    Chen S; Zhu M; Zhang Y; Dong S; Wang X
    Langmuir; 2021 Feb; 37(7):2312-2321. PubMed ID: 33544610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contact Time of Droplet Impact on Inclined Ridged Superhydrophobic Surfaces.
    Hu Z; Chu F; Lin Y; Wu X
    Langmuir; 2022 Feb; 38(4):1540-1549. PubMed ID: 35072484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.