BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35254064)

  • 1. Dynamic Assembly of DNA Nanostructures in Living Cells for Mitochondrial Interference.
    Li F; Liu Y; Dong Y; Chu Y; Song N; Yang D
    J Am Chem Soc; 2022 Mar; 144(10):4667-4677. PubMed ID: 35254064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA Interference against ATP as a Gene Therapy Approach for Prostate Cancer.
    Chen S; Ma J; Xiao Y; Zhou D; He P; Chen Y; Zheng X; Lin H; Qiu F; Yuan Y; Zhong J; Li X; Pan X; Fang Z; Wang C
    Mol Pharm; 2023 Oct; 20(10):5214-5225. PubMed ID: 37733628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Telomerase-Mediated Self-Assembly of DNA Network in Cancer Cells Enabling Mitochondrial Interference.
    Guo Y; Li S; Tong Z; Tang J; Zhang R; Lv Z; Song N; Yang D; Yao C
    J Am Chem Soc; 2023 Nov; 145(43):23859-23873. PubMed ID: 37857277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endogenous miRNA and K
    Sun W; Yin J; Liu L; Wu Z; Wang Y; Liu T; Xiong H; Liu X; Wang X; Jiang H
    Anal Chem; 2023 Sep; 95(37):14101-14110. PubMed ID: 37674256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial Artificial K
    Ma P; Luo Z; Li Z; Lin Y; Li Z; Wu Z; Ren C; Wu YL
    Adv Healthc Mater; 2024 Jan; 13(2):e2302012. PubMed ID: 37742136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Miro1-mediated mitochondrial positioning shapes intracellular energy gradients required for cell migration.
    Schuler MH; Lewandowska A; Caprio GD; Skillern W; Upadhyayula S; Kirchhausen T; Shaw JM; Cunniff B
    Mol Biol Cell; 2017 Aug; 28(16):2159-2169. PubMed ID: 28615318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondria Targeted Nanoscale Zeolitic Imidazole Framework-90 for ATP Imaging in Live Cells.
    Deng J; Wang K; Wang M; Yu P; Mao L
    J Am Chem Soc; 2017 Apr; 139(16):5877-5882. PubMed ID: 28385016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Situ Assembly of Platinum(II)-Metallopeptide Nanostructures Disrupts Energy Homeostasis and Cellular Metabolism.
    Zhou Z; Maxeiner K; Moscariello P; Xiang S; Wu Y; Ren Y; Whitfield CJ; Xu L; Kaltbeitzel A; Han S; Mücke D; Qi H; Wagner M; Kaiser U; Landfester K; Lieberwirth I; Ng DYW; Weil T
    J Am Chem Soc; 2022 Jul; 144(27):12219-12228. PubMed ID: 35729777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mitochondria-targeted imidazole substituted oleic acid 'TPP-IOA' affects mitochondrial bioenergetics and its protective efficacy in cells is influenced by cellular dependence on aerobic metabolism.
    Maddalena LA; Ghelfi M; Atkinson J; Stuart JA
    Biochim Biophys Acta Bioenerg; 2017 Jan; 1858(1):73-85. PubMed ID: 27836699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catabolic efficiency of aerobic glycolysis: the Warburg effect revisited.
    Vazquez A; Liu J; Zhou Y; Oltvai ZN
    BMC Syst Biol; 2010 May; 4():58. PubMed ID: 20459610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial ATP is required for the maintenance of membrane integrity in stallion spermatozoa, whereas motility requires both glycolysis and oxidative phosphorylation.
    Davila MP; Muñoz PM; Bolaños JM; Stout TA; Gadella BM; Tapia JA; da Silva CB; Ferrusola CO; Peña FJ
    Reproduction; 2016 Dec; 152(6):683-694. PubMed ID: 27798283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition--a Warburg-reversing effect.
    Lu CL; Qin L; Liu HC; Candas D; Fan M; Li JJ
    PLoS One; 2015; 10(3):e0121046. PubMed ID: 25807077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reductase and Light Programmatical Gated DNA Nanodevice for Spatiotemporally Controlled Imaging of Biomolecules in Subcellular Organelles under Hypoxic Conditions.
    Liu J; Yang L; Xue C; Huang G; Chen S; Zheng J; Yang R
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):33894-33904. PubMed ID: 34275283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioenergetic consequences of opening the ATP-sensitive K(+) channel of heart mitochondria.
    Kowaltowski AJ; Seetharaman S; Paucek P; Garlid KD
    Am J Physiol Heart Circ Physiol; 2001 Feb; 280(2):H649-57. PubMed ID: 11158963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion.
    Cunniff B; McKenzie AJ; Heintz NH; Howe AK
    Mol Biol Cell; 2016 Sep; 27(17):2662-74. PubMed ID: 27385336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Assembly of DNA Nanostructures in Cancer Cells Enables the Coupling of Autophagy Activating and Real-Time Tracking.
    Guo Y; Tong Z; Huang Y; Tang J; Xue X; Yang D; Yao C
    Nano Lett; 2024 Mar; 24(11):3532-3540. PubMed ID: 38457281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting mitochondrial targeting signal(s), TPP and bis-TPP, for eradicating cancer stem cells (CSCs).
    Ozsvari B; Sotgia F; Lisanti MP
    Aging (Albany NY); 2018 Feb; 10(2):229-240. PubMed ID: 29466249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hexokinase-2 bound to mitochondria: cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy.
    Mathupala SP; Ko YH; Pedersen PL
    Semin Cancer Biol; 2009 Feb; 19(1):17-24. PubMed ID: 19101634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoplatform based on GSH-responsive mesoporous silica nanoparticles for cancer therapy and mitochondrial targeted imaging.
    He H; Meng S; Li H; Yang Q; Xu Z; Chen X; Sun Z; Jiang B; Li C
    Mikrochim Acta; 2021 Apr; 188(5):154. PubMed ID: 33821295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.