These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 35254065)

  • 1. Dynamic Tuning of the Bandgap of CdSe Quantum Dots through Redox-Active Exciton-Delocalizing N-Heterocyclic Carbene Ligands.
    Westmoreland DE; López-Arteaga R; Kantt LP; Wasielewski MR; Weiss EA
    J Am Chem Soc; 2022 Mar; 144(10):4300-4304. PubMed ID: 35254065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-Heterocyclic Carbenes as Reversible Exciton-Delocalizing Ligands for Photoluminescent Quantum Dots.
    Westmoreland DE; López-Arteaga R; Weiss EA
    J Am Chem Soc; 2020 Feb; 142(5):2690-2696. PubMed ID: 31934758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Description of the Adsorption and Exciton Delocalizing Properties of p-Substituted Thiophenols on CdSe Quantum Dots.
    Aruda KO; Amin VA; Thompson CM; Lau B; Nepomnyashchii AB; Weiss EA
    Langmuir; 2016 Apr; 32(14):3354-64. PubMed ID: 27002248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge Trapping versus Exciton Delocalization in CdSe Quantum Dots.
    Grenland JJ; Maddux CJA; Kelley DF; Kelley AM
    J Phys Chem Lett; 2017 Oct; 8(20):5113-5118. PubMed ID: 28972776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectric response function for colloidal semiconductor quantum dots.
    Karpulevich A; Bui H; Wang Z; Hapke S; Palencia Ramírez C; Weller H; Bester G
    J Chem Phys; 2019 Dec; 151(22):224103. PubMed ID: 31837677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Interligand Coupling in Determining the Interfacial Electronic Structure of Colloidal CdS Quantum Dots.
    Harris RD; Amin VA; Lau B; Weiss EA
    ACS Nano; 2016 Jan; 10(1):1395-403. PubMed ID: 26727219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ferrocene-coated CdSe/ZnS quantum dots as electroactive nanoparticles hybrids.
    Dorokhin D; Tomczak N; Reinhoudt DN; Velders AH; Vancso GJ
    Nanotechnology; 2010 Jul; 21(28):285703. PubMed ID: 20585158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced rate of radiative decay in CdSe quantum dots upon adsorption of an exciton-delocalizing ligand.
    Jin S; Harris RD; Lau B; Aruda KO; Amin VA; Weiss EA
    Nano Lett; 2014 Sep; 14(9):5323-8. PubMed ID: 25167466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relaxation of exciton confinement in CdSe quantum dots by modification with a conjugated dithiocarbamate ligand.
    Frederick MT; Weiss EA
    ACS Nano; 2010 Jun; 4(6):3195-200. PubMed ID: 20503978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exciton-Delocalizing Ligands Can Speed Up Energy Migration in Nanocrystal Solids.
    Azzaro MS; Dodin A; Zhang DY; Willard AP; Roberts ST
    Nano Lett; 2018 May; 18(5):3259-3270. PubMed ID: 29652509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sizing Up Excitons in Core-Shell Quantum Dots via Shell-Dependent Photoluminescence Blinking.
    Fisher AAE; Osborne MA
    ACS Nano; 2017 Aug; 11(8):7829-7840. PubMed ID: 28679040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral shift, electronic coupling and exciton delocalization in nanocrystal dimers: insights from all-atom electronic structure computations.
    Coden M; De Checchi P; Fresch B
    Nanoscale; 2020 Sep; 12(35):18124-18136. PubMed ID: 32852028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effect of Exciton-Delocalizing Thiols on Intrinsic Dual Emitting Semiconductor Nanocrystals.
    Jethi L; Mack TG; Krause MM; Drake S; Kambhampati P
    Chemphyschem; 2016 Mar; 17(5):665-9. PubMed ID: 26752223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subpicosecond Photoinduced Hole Transfer from a CdS Quantum Dot to a Molecular Acceptor Bound Through an Exciton-Delocalizing Ligand.
    Lian S; Weinberg DJ; Harris RD; Kodaimati MS; Weiss EA
    ACS Nano; 2016 Jun; 10(6):6372-82. PubMed ID: 27281685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalous Emission Shift of CdSe/CdS/ZnS Quantum Dots at Cryogenic Temperatures.
    Liu S; Shu Y; Zhu M; Qin H; Peng X
    Nano Lett; 2022 Apr; 22(7):3011-3017. PubMed ID: 35319213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic Processes within Quantum Dot-Molecule Complexes.
    Harris RD; Bettis Homan S; Kodaimati M; He C; Nepomnyashchii AB; Swenson NK; Lian S; Calzada R; Weiss EA
    Chem Rev; 2016 Nov; 116(21):12865-12919. PubMed ID: 27499491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A molecule to detect and perturb the confinement of charge carriers in quantum dots.
    Frederick MT; Amin VA; Cass LC; Weiss EA
    Nano Lett; 2011 Dec; 11(12):5455-60. PubMed ID: 22032799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-threshold laser medium utilizing semiconductor nanoshell quantum dots.
    Porotnikov D; Diroll BT; Harankahage D; Obloy L; Yang M; Cassidy J; Ellison C; Miller E; Rogers S; Tarnovsky AN; Schaller RD; Zamkov M
    Nanoscale; 2020 Sep; 12(33):17426-17436. PubMed ID: 32797122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand Induced Spectral Changes in CdSe Quantum Dots.
    Azpiroz JM; De Angelis F
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19736-45. PubMed ID: 26289823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.