BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 35254958)

  • 1. Ocular surface predisposing factors for digital display-induced dry eye.
    Talens-Estarelles C; García-Marqués JV; Cerviño A; García-Lázaro S
    Clin Exp Optom; 2023 May; 106(4):373-379. PubMed ID: 35254958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Digital display use and contact lens wear: Effects on dry eye signs and symptoms.
    Talens-Estarelles C; García-Marqués JV; Cerviño A; García-Lázaro S
    Ophthalmic Physiol Opt; 2022 Jul; 42(4):797-806. PubMed ID: 35394083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining the Best Management Strategy for Preventing Short-Term Effects of Digital Display Use on Dry Eyes.
    Talens-Estarelles C; García-Marqués JV; Cerviño A; García-Lázaro S
    Eye Contact Lens; 2022 Oct; 48(10):416-423. PubMed ID: 36155947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of condition-induced changes on the ocular surface using novel methods to assess the tear film dynamics and the lipid layer.
    Vicente García-Marqués J; Talens-Estarelles C; García-Lázaro S; Cerviño A
    Cont Lens Anterior Eye; 2023 Jun; 46(3):101799. PubMed ID: 36577612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ocular surface changes following computer use in post-LASIK patients.
    Talens-Estarelles C; Talens-Estarelles C; García-Lázaro S
    Ophthalmic Physiol Opt; 2024 May; 44(3):554-563. PubMed ID: 38386250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning-based prediction of tear osmolarity for contact lens practice.
    Garaszczuk IK; Romanos-Ibanez M; Consejo A
    Ophthalmic Physiol Opt; 2024 Jun; 44(4):727-736. PubMed ID: 38525850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How Do Different Digital Displays Affect the Ocular Surface?
    Talens-Estarelles C; Sanchis-Jurado V; Esteve-Taboada JJ; Pons ÁM; García-Lázaro S
    Optom Vis Sci; 2020 Dec; 97(12):1070-1079. PubMed ID: 33259378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smartphone Use and Effects on Tear Film, Blinking and Binocular Vision.
    Golebiowski B; Long J; Harrison K; Lee A; Chidi-Egboka N; Asper L
    Curr Eye Res; 2020 Apr; 45(4):428-434. PubMed ID: 31573824
    [No Abstract]   [Full Text] [Related]  

  • 9. Therapeutic benefits of blinking exercises in dry eye disease.
    Kim AD; Muntz A; Lee J; Wang MTM; Craig JP
    Cont Lens Anterior Eye; 2021 Jun; 44(3):101329. PubMed ID: 32409236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of incomplete blinking as a measurement of dry eye disease.
    Jie Y; Sella R; Feng J; Gomez ML; Afshari NA
    Ocul Surf; 2019 Jul; 17(3):440-446. PubMed ID: 31152804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preoperative dry eyes disease in cataract patients with deficient tear break up time: evaluation of OSDI questionnaire, its subcategories and Keratograph 5M device results.
    Fydanaki O; Chalkiadaki E; Tsiogka A; Gartaganis PS; Karmiris E
    Int Ophthalmol; 2022 Oct; 42(10):3017-3025. PubMed ID: 35394587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the first tear film break-up point in Sjögren's syndrome and non-Sjögren's syndrome dry eye patients.
    Zhao S; Le Q
    BMC Ophthalmol; 2022 Jan; 22(1):1. PubMed ID: 34980014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Emerging Method to Assess Tear Film Spread and Dynamics as Possible Tear Film Homeostasis Markers.
    García-Marqués JV; Talens-Estarelles C; Martínez-Albert N; García-Lázaro S; Cerviño A
    Curr Eye Res; 2021 Sep; 46(9):1291-1298. PubMed ID: 33560896
    [No Abstract]   [Full Text] [Related]  

  • 14. Correlation of Measures From the OCULUS Keratograph and Clinical Assessments of Dry Eye Disease in the Dry Eye Assessment and Management Study.
    Sutphin JE; Ying GS; Bunya VY; Yu Y; Lin MC; McWilliams K; Schmucker E; Kuklinski EJ; Asbell PA; Maguire MG;
    Cornea; 2022 Jul; 41(7):845-851. PubMed ID: 34294637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of breaks on digital eye strain, dry eye and binocular vision: Testing the 20-20-20 rule.
    Talens-Estarelles C; Cerviño A; García-Lázaro S; Fogelton A; Sheppard A; Wolffsohn JS
    Cont Lens Anterior Eye; 2023 Apr; 46(2):101744. PubMed ID: 35963776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Location and pattern of non-invasive keratographic tear film break-up according to dry eye disease subtypes.
    Kim J; Kim JY; Seo KY; Kim TI; Chin HS; Jung JW
    Acta Ophthalmol; 2019 Dec; 97(8):e1089-e1097. PubMed ID: 31062499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the tear film and meibomian gland morphology between preclinical dry eye and normal subjects represented by ocular surface disease index scores.
    Fatima A; Vadla P; Konda N
    Exp Eye Res; 2022 Sep; 222():109188. PubMed ID: 35841949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional and morphological evaluation of the meibomian glands and ocular surface assessment at high altitude.
    Li Z; Wan W; Ji Y; Zheng S; Hu K
    Indian J Ophthalmol; 2023 Apr; 71(4):1483-1487. PubMed ID: 37026287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ocular Surface Disease Index
    Chatterjee S; Agrawal D; Chaturvedi P
    Indian J Ophthalmol; 2021 Sep; 69(9):2396-2400. PubMed ID: 34427230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of blinking on ocular surface and tear film parameters.
    Wang MTM; Tien L; Han A; Lee JM; Kim D; Markoulli M; Craig JP
    Ocul Surf; 2018 Oct; 16(4):424-429. PubMed ID: 29883739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.