These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35254969)

  • 21. A dynamic fuzzy neural filter for separation of discontinuous adventitious sounds from vesicular sounds.
    Mastorocostas PA; Theocharis JB
    Comput Biol Med; 2007 Jan; 37(1):60-9. PubMed ID: 16337620
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computerized Lung Sound Screening for Pediatric Auscultation in Noisy Field Environments.
    Emmanouilidou D; McCollum ED; Park DE; Elhilali M
    IEEE Trans Biomed Eng; 2018 Jul; 65(7):1564-1574. PubMed ID: 28641244
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance evaluation and enhancement of lung sound recognition system in two real noisy environments.
    Chang GC; Lai YF
    Comput Methods Programs Biomed; 2010 Feb; 97(2):141-50. PubMed ID: 19615782
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of adventitious lung sounds originating from pulmonary tuberculosis.
    Becker KW; Scheffer C; Blanckenberg MM; Diacon AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4334-7. PubMed ID: 24110692
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic visualization of lung sounds with a vibration response device: a case series.
    Dellinger RP; Parrillo JE; Kushnir A; Rossi M; Kushnir I
    Respiration; 2008; 75(1):60-72. PubMed ID: 17551264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Separation of fine crackles from vesicular sounds by a nonlinear digital filter.
    Ono M; Arakawa K; Mori M; Sugimoto T; Harashima H
    IEEE Trans Biomed Eng; 1989 Feb; 36(2):286-91. PubMed ID: 2645207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Instantaneous frequency based index to characterize respiratory crackles.
    Speranza CG; Moraes R
    Comput Biol Med; 2018 Nov; 102():21-29. PubMed ID: 30240835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of discontinuous adventitious lung sounds by Hilbert-Huang spectrum.
    Reyes BA; Charleston-Villalobos S; Gonzalez-Camarena R; Aljama-Corrales T
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3620-3. PubMed ID: 19163493
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [A new medical education using a lung sound auscultation simulator called "Mr. Lung"].
    Yoshii C; Anzai T; Yatera K; Kawajiri T; Nakashima Y; Kido M
    J UOEH; 2002 Sep; 24(3):249-55. PubMed ID: 12235955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lung sound analysis for wheeze episode detection.
    Jain A; Vepa J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2582-5. PubMed ID: 19163231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lung sound analysis correlates to injury and recruitment as identified by computed tomography: an experimental study.
    Vena A; Rylander C; Perchiazzi G; Giuliani R; Hedenstierna G
    Intensive Care Med; 2011 Aug; 37(8):1378-83. PubMed ID: 21713558
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inception-Based Network and Multi-Spectrogram Ensemble Applied To Predict Respiratory Anomalies and Lung Diseases.
    Pham L; Phan H; Schindler A; King R; Mertins A; McLoughlin I
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():253-256. PubMed ID: 34891284
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wheeze sound analysis using computer-based techniques: a systematic review.
    Ghulam Nabi F; Sundaraj K; Chee Kiang L; Palaniappan R; Sundaraj S
    Biomed Tech (Berl); 2019 Feb; 64(1):1-28. PubMed ID: 29087951
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feature-Based Fusion Using CNN for Lung and Heart Sound Classification.
    Tariq Z; Shah SK; Lee Y
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214424
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lung and Heart Sounds Analysis: State-of-the-Art and Future Trends.
    Padilla-Ortiz AL; Ibarra D
    Crit Rev Biomed Eng; 2018; 46(1):33-52. PubMed ID: 29717676
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Digital respirosonography. New images of lung sounds.
    Pasterkamp H; Carson C; Daien D; Oh Y
    Chest; 1989 Dec; 96(6):1405-12. PubMed ID: 2684558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Data augmentation using Variational Autoencoders for improvement of respiratory disease classification.
    Saldanha J; Chakraborty S; Patil S; Kotecha K; Kumar S; Nayyar A
    PLoS One; 2022; 17(8):e0266467. PubMed ID: 35960763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Normal and Adventitious Breath Sounds].
    Koehler U; Hildebrandt O; Kerzel S; Urban C; Hoehle L; Weissflog A; Nikolaizik W; Koehler J; Sohrabi K; Gross V
    Pneumologie; 2016 Jun; 70(6):397-404. PubMed ID: 27177168
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scalogram based prediction model for respiratory disorders using optimized convolutional neural networks.
    Jayalakshmy S; Sudha GF
    Artif Intell Med; 2020 Mar; 103():101809. PubMed ID: 32143805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Convolutional neural networks based efficient approach for classification of lung diseases.
    Demir F; Sengur A; Bajaj V
    Health Inf Sci Syst; 2020 Dec; 8(1):4. PubMed ID: 31915523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.