BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35255310)

  • 1. Differential ETS1 binding to T:G mismatches within a CpG dinucleotide contributes to C-to-T somatic mutation rate of the IDH2 hotspot at codon Arg140.
    Yang J; Gupta E; Horton JR; Blumenthal RM; Zhang X; Cheng X
    DNA Repair (Amst); 2022 May; 113():103306. PubMed ID: 35255310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human thymine DNA glycosylase (TDG) and methyl-CpG-binding protein 4 (MBD4) excise thymine glycol (Tg) from a Tg:G mispair.
    Yoon JH; Iwai S; O'Connor TR; Pfeifer GP
    Nucleic Acids Res; 2003 Sep; 31(18):5399-404. PubMed ID: 12954776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites.
    Hendrich B; Hardeland U; Ng HH; Jiricny J; Bird A
    Nature; 1999 Sep; 401(6750):301-4. PubMed ID: 10499592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferential CEBP binding to T:G mismatches and increased C-to-T human somatic mutations.
    Yang J; Horton JR; Akdemir KC; Li J; Huang Y; Kumar J; Blumenthal RM; Zhang X; Cheng X
    Nucleic Acids Res; 2021 May; 49(9):5084-5094. PubMed ID: 33877329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of base excision repair in maintaining the genetic and epigenetic integrity of CpG sites.
    Bellacosa A; Drohat AC
    DNA Repair (Amst); 2015 Aug; 32():33-42. PubMed ID: 26021671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The main role of human thymine-DNA glycosylase is removal of thymine produced by deamination of 5-methylcytosine and not removal of ethenocytosine.
    Abu M; Waters TR
    J Biol Chem; 2003 Mar; 278(10):8739-44. PubMed ID: 12493755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of human methyl-binding domain IV glycosylase bound to abasic DNA.
    Manvilla BA; Maiti A; Begley MC; Toth EA; Drohat AC
    J Mol Biol; 2012 Jul; 420(3):164-75. PubMed ID: 22560993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thymine DNA glycosylase.
    Hardeland U; Bentele M; Lettieri T; Steinacher R; Jiricny J; Schär P
    Prog Nucleic Acid Res Mol Biol; 2001; 68():235-53. PubMed ID: 11554300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excision of thymine and 5-hydroxymethyluracil by the MBD4 DNA glycosylase domain: structural basis and implications for active DNA demethylation.
    Hashimoto H; Zhang X; Cheng X
    Nucleic Acids Res; 2012 Sep; 40(17):8276-84. PubMed ID: 22740654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Dnmt3b:thymine-DNA glycosylase interaction and stimulation of thymine glycosylase-mediated repair by DNA methyltransferase(s) and RNA.
    Boland MJ; Christman JK
    J Mol Biol; 2008 Jun; 379(3):492-504. PubMed ID: 18452947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic mechanism of the mismatch-specific DNA glycosylase methyl-CpG-binding domain 4.
    Ouzon-Shubeita H; Jung H; Lee MH; Koag MC; Lee S
    Biochem J; 2020 May; 477(9):1601-1612. PubMed ID: 32297632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Base excision repair of U:G mismatches at a mutational hotspot in the p53 gene is more efficient than base excision repair of T:G mismatches in extracts of human colon tumors.
    Schmutte C; Yang AS; Beart RW; Jones PA
    Cancer Res; 1995 Sep; 55(17):3742-6. PubMed ID: 7641186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the substrate discrimination mechanisms of methyl-CpG-binding domain 4.
    Ouzon-Shubeita H; Schmaltz LF; Lee S
    Biochem J; 2021 May; 478(10):1985-1997. PubMed ID: 33960375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA.
    Moréra S; Grin I; Vigouroux A; Couvé S; Henriot V; Saparbaev M; Ishchenko AA
    Nucleic Acids Res; 2012 Oct; 40(19):9917-26. PubMed ID: 22848106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Base analog and neighboring base effects on substrate specificity of recombinant human G:T mismatch-specific thymine DNA-glycosylase.
    Sibghat-Ullah ; Gallinari P; Xu YZ; Goodman MF; Bloom LB; Jiricny J; Day RS
    Biochemistry; 1996 Oct; 35(39):12926-32. PubMed ID: 8841138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MBD4 and TDG: multifaceted DNA glycosylases with ever expanding biological roles.
    Sjolund AB; Senejani AG; Sweasy JB
    Mutat Res; 2013; 743-744():12-25. PubMed ID: 23195996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biphasic kinetics of the human DNA repair protein MED1 (MBD4), a mismatch-specific DNA N-glycosylase.
    Petronzelli F; Riccio A; Markham GD; Seeholzer SH; Stoerker J; Genuardi M; Yeung AT; Matsumoto Y; Bellacosa A
    J Biol Chem; 2000 Oct; 275(42):32422-9. PubMed ID: 10930409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice.
    Millar CB; Guy J; Sansom OJ; Selfridge J; MacDougall E; Hendrich B; Keightley PD; Bishop SM; Clarke AR; Bird A
    Science; 2002 Jul; 297(5580):403-5. PubMed ID: 12130785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methylation in eucaryotes influences the repair of G/T and A/C DNA basepair mismatches.
    Hare JT; Taylor JH
    Cell Biophys; 1989; 15(1-2):29-40. PubMed ID: 2476225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DNA repair process in Escherichia coli corrects U:G and T:G mismatches to C:G at sites of cytosine methylation.
    Gabbara S; Wyszynski M; Bhagwat AS
    Mol Gen Genet; 1994 Apr; 243(2):244-8. PubMed ID: 8177221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.