BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35255310)

  • 21. Thymine-DNA glycosylase and G to A transition mutations at CpG sites.
    Waters TR; Swann PF
    Mutat Res; 2000 Apr; 462(2-3):137-47. PubMed ID: 10767625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytosine methylation and DNA repair.
    Walsh CP; Xu GL
    Curr Top Microbiol Immunol; 2006; 301():283-315. PubMed ID: 16570853
    [TBL] [Abstract][Full Text] [Related]  

  • 23. AP endonuclease 1 prevents the extension of a T/G mismatch by DNA polymerase β to prevent mutations in CpGs during base excision repair.
    Lai Y; Jiang Z; Zhou J; Osemota E; Liu Y
    DNA Repair (Amst); 2016 Jul; 43():89-97. PubMed ID: 27183823
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A convenient spectrometric assay system for intracellular quantitative measurement of DNA glycosylase activity.
    Li S; Huang Q; Wang L; Lan Y; Zhang X; Yang B; Du P; Hua Z
    Acta Biochim Biophys Sin (Shanghai); 2010 Jun; 42(6):381-7. PubMed ID: 20539937
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aberrant repair initiated by mismatch-specific thymine-DNA glycosylases provides a mechanism for the mutational bias observed in CpG islands.
    Talhaoui I; Couve S; Gros L; Ishchenko AA; Matkarimov B; Saparbaev MK
    Nucleic Acids Res; 2014 Jun; 42(10):6300-13. PubMed ID: 24692658
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Methylation-mediated deamination of 5-methylcytosine appears to give rise to mutations causing human inherited disease in CpNpG trinucleotides, as well as in CpG dinucleotides.
    Cooper DN; Mort M; Stenson PD; Ball EV; Chuzhanova NA
    Hum Genomics; 2010 Aug; 4(6):406-10. PubMed ID: 20846930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HhaI and HpaII DNA methyltransferases bind DNA mismatches, methylate uracil and block DNA repair.
    Yang AS; Shen JC; Zingg JM; Mi S; Jones PA
    Nucleic Acids Res; 1995 Apr; 23(8):1380-7. PubMed ID: 7753629
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Epigenetic modifications in DNA could mimic oxidative DNA damage: A double-edged sword.
    Ito S; Kuraoka I
    DNA Repair (Amst); 2015 Aug; 32():52-57. PubMed ID: 25956859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One role for DNA methylation in vertebrate cells is strand discrimination in mismatch repair.
    Hare JT; Taylor JH
    Proc Natl Acad Sci U S A; 1985 Nov; 82(21):7350-4. PubMed ID: 2997788
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural basis of the versatile DNA recognition ability of the methyl-CpG binding domain of methyl-CpG binding domain protein 4.
    Otani J; Arita K; Kato T; Kinoshita M; Kimura H; Suetake I; Tajima S; Ariyoshi M; Shirakawa M
    J Biol Chem; 2013 Mar; 288(9):6351-62. PubMed ID: 23316048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of the Escherichia coli mug protein in the removal of uracil and 3,N(4)-ethenocytosine from DNA.
    Lutsenko E; Bhagwat AS
    J Biol Chem; 1999 Oct; 274(43):31034-8. PubMed ID: 10521502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Base excision repair of tandem modifications in a methylated CpG dinucleotide.
    Sassa A; Çağlayan M; Dyrkheeva NS; Beard WA; Wilson SH
    J Biol Chem; 2014 May; 289(20):13996-4008. PubMed ID: 24695738
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetics of the action of thymine DNA glycosylase.
    Waters TR; Swann PF
    J Biol Chem; 1998 Aug; 273(32):20007-14. PubMed ID: 9685338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient repair of all types of single-base mismatches in recombination intermediates in Chinese hamster ovary cells. Competition between long-patch and G-T glycosylase-mediated repair of G-T mismatches.
    Bill CA; Duran WA; Miselis NR; Nickoloff JA
    Genetics; 1998 Aug; 149(4):1935-43. PubMed ID: 9691048
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strand bias in mutation involving 5-methylcytosine deamination in the human hprt gene.
    Skandalis A; Ford BN; Glickman BW
    Mutat Res; 1994 Jan; 314(1):21-6. PubMed ID: 7504188
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inefficient in vivo repair of mismatches at an oncogenic hotspot correlated with lack of binding by mismatch repair proteins and with phase of the cell cycle.
    Matton N; Simonetti J; Williams K
    Carcinogenesis; 1999 Aug; 20(8):1417-24. PubMed ID: 10426786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wide intra-genomic G+C heterogeneity in human and chicken is mainly due to strand-symmetric directional mutation pressures: dGTP-oxidation and symmetric cytosine-deamination hypotheses.
    Sueoka N
    Gene; 2002 Oct; 300(1-2):141-54. PubMed ID: 12468095
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of the substrate spectrum of the human mismatch-specific DNA N-glycosylase MED1 (MBD4): fundamental role of the catalytic domain.
    Petronzelli F; Riccio A; Markham GD; Seeholzer SH; Genuardi M; Karbowski M; Yeung AT; Matsumoto Y; Bellacosa A
    J Cell Physiol; 2000 Dec; 185(3):473-80. PubMed ID: 11056019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA-substrate sequence specificity of human G:T mismatch repair activity.
    Sibghat-Ullah ; Day RS
    Nucleic Acids Res; 1993 Mar; 21(5):1281-7. PubMed ID: 8464712
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of MED1 (MBD4) Gene in DNA repair and human cancer.
    Bellacosa A
    J Cell Physiol; 2001 May; 187(2):137-44. PubMed ID: 11267993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.