These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35255316)

  • 1. Optical tweezers integrated surface plasmon resonance holographic microscopy for characterizing cell-substrate interactions under noninvasive optical force stimuli.
    Dai S; Mi J; Dou J; Lu H; Dong C; Ren L; Zhao R; Shi W; Zhang N; Zhou Y; Zhang J; Di J; Zhao J
    Biosens Bioelectron; 2022 Jun; 206():114131. PubMed ID: 35255316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-wavelength surface plasmon resonance holographic microscopy for simultaneous measurements of cell-substrate distance and cytoplasm refractive index.
    Dai S; Mi J; Dou J; Yu T; Zhang M; Di J; Zhang J; Zhao J
    Opt Lett; 2022 May; 47(9):2306-2309. PubMed ID: 35486786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-channel illumination surface plasmon resonance holographic microscopy for resolution improvement.
    Dou J; Dai S; Dong C; Zhang J; Di J; Zhao J
    Opt Lett; 2021 Apr; 46(7):1604-1607. PubMed ID: 33793498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time and wide-field mapping of cell-substrate adhesion gap and its evolution via surface plasmon resonance holographic microscopy.
    Dai S; Yu T; Zhang J; Lu H; Dou J; Zhang M; Dong C; Di J; Zhao J
    Biosens Bioelectron; 2021 Feb; 174():112826. PubMed ID: 33262060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-Molecular Applications of Recent Developments in Optical Tweezers.
    Choudhary D; Mossa A; Jadhav M; Cecconi C
    Biomolecules; 2019 Jan; 9(1):. PubMed ID: 30641944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards 3D modelling and imaging of infection scenarios at the single cell level using holographic optical tweezers and digital holographic microscopy.
    Kemper B; Barroso Á; Woerdemann M; Dewenter L; Vollmer A; Schubert R; Mellmann A; von Bally G; Denz C
    J Biophotonics; 2013 Mar; 6(3):260-6. PubMed ID: 22700281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control.
    Ling L; Guo HL; Zhong XL; Huang L; Li JF; Gan L; Li ZY
    Nanotechnology; 2012 Jun; 23(21):215302. PubMed ID: 22551556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microdeformation of RBCs under oxidative stress measured by digital holographic microscopy and optical tweezers.
    Liu J; Zhu L; Zhang F; Dong M; Qu X
    Appl Opt; 2019 May; 58(15):4042-4046. PubMed ID: 31158157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forces of Change: Optical Tweezers in Membrane Remodeling Studies.
    Cheppali SK; Dharan R; Sorkin R
    J Membr Biol; 2022 Dec; 255(6):677-690. PubMed ID: 35616705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Manipulation of DNA using a Combination of Optical and Thermophoretic Forces: Separation of Different-Sized DNA from Mixture Solution.
    Shoji T; Itoh K; Saitoh J; Kitamura N; Yoshii T; Murakoshi K; Yamada Y; Yokoyama T; Ishihara H; Tsuboi Y
    Sci Rep; 2020 Feb; 10(1):3349. PubMed ID: 32098985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive detection of changes in cells' cytosol conductivity by combining dielectrophoresis with optical tweezers.
    Moisescu MG; Savopol T; Dimitriu L; Cemazar J; Kovacs E; Radu M
    Anal Chim Acta; 2018 Nov; 1030():166-171. PubMed ID: 30032766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanics of Ex Vivo-Generated Red Blood Cells Investigated by Optical Tweezers and Digital Holographic Microscopy.
    Bernecker C; Lima MARBF; Ciubotaru CD; Schlenke P; Dorn I; Cojoc D
    Cells; 2021 Mar; 10(3):. PubMed ID: 33806520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital holographic microscopy by use of surface plasmon resonance for imaging of cell membranes.
    Hu C; Zhong J; Weng J
    J Biomed Opt; 2010; 15(5):056015. PubMed ID: 21054109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging live cell membranes via surface plasmon-enhanced fluorescence and phase microscopy.
    He RY; Lin CY; Su YD; Chiu KC; Chang NS; Wu HL; Chen SJ
    Opt Express; 2010 Feb; 18(4):3649-59. PubMed ID: 20389375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical tweezers for single cells.
    Zhang H; Liu KK
    J R Soc Interface; 2008 Jul; 5(24):671-90. PubMed ID: 18381254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optoelectronic tweezers integrated with lensfree holographic microscopy for wide-field interactive cell and particle manipulation on a chip.
    Huang KW; Su TW; Ozcan A; Chiou PY
    Lab Chip; 2013 Jun; 13(12):2278-84. PubMed ID: 23661233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelength-scanning surface plasmon resonance microscopy: A novel tool for real time sensing of cell-substrate interactions.
    Zeng Y; Zhou J; Wang X; Cai Z; Shao Y
    Biosens Bioelectron; 2019 Dec; 145():111717. PubMed ID: 31561092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dressing plasmon resonance with particle-microcavity architecture for efficient nano-optical trapping and sensing.
    Zhang H; Zhou Y; Yu X; Luan F; Xu J; Ong HC; Ho HP
    Opt Lett; 2014 Feb; 39(4):873-6. PubMed ID: 24562229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dark-field optical tweezers for nanometrology of metallic nanoparticles.
    Pearce K; Wang F; Reece PJ
    Opt Express; 2011 Dec; 19(25):25559-69. PubMed ID: 22273949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.