These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35255316)

  • 21. Optical tweezers across scales in cell biology.
    Favre-Bulle IA; Scott EK
    Trends Cell Biol; 2022 Nov; 32(11):932-946. PubMed ID: 35672197
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Individual Plasmonic Nanoprobes for Biosensing and Bioimaging: Recent Advances and Perspectives.
    Ma J; Wang X; Feng J; Huang C; Fan Z
    Small; 2021 Feb; 17(8):e2004287. PubMed ID: 33522074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy.
    Giebel K; Bechinger C; Herminghaus S; Riedel M; Leiderer P; Weiland U; Bastmeyer M
    Biophys J; 1999 Jan; 76(1 Pt 1):509-16. PubMed ID: 9876164
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Common-path digital holographic microscopy for near-field phase imaging based on surface plasmon resonance.
    Zhang J; Dai S; Ma C; Di J; Zhao J
    Appl Opt; 2017 Apr; 56(11):3223-3228. PubMed ID: 28414385
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Fabry-Pérot cavity coupled surface plasmon photodiode for electrical biomolecular sensing.
    Allison G; Sana AK; Ogawa Y; Kato H; Ueno K; Misawa H; Hayashi K; Suzuki H
    Nat Commun; 2021 Nov; 12(1):6483. PubMed ID: 34759292
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optothermal Manipulations of Colloidal Particles and Living Cells.
    Lin L; Hill EH; Peng X; Zheng Y
    Acc Chem Res; 2018 Jun; 51(6):1465-1474. PubMed ID: 29799720
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions.
    Conkey DB; Trivedi RP; Pavani SR; Smalyukh II; Piestun R
    Opt Express; 2011 Feb; 19(5):3835-42. PubMed ID: 21369208
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laser trapping of colloidal metal nanoparticles.
    Lehmuskero A; Johansson P; Rubinsztein-Dunlop H; Tong L; Käll M
    ACS Nano; 2015; 9(4):3453-69. PubMed ID: 25808609
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light.
    Shoji T; Saitoh J; Kitamura N; Nagasawa F; Murakoshi K; Yamauchi H; Ito S; Miyasaka H; Ishihara H; Tsuboi Y
    J Am Chem Soc; 2013 May; 135(17):6643-8. PubMed ID: 23586869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical force characterization in manipulating live cells with optical tweezers.
    Wu Y; Sun D; Huang W
    J Biomech; 2011 Feb; 44(4):741-6. PubMed ID: 21087769
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Label-free biosensing over a wide concentration range with photonic force microscopy.
    Heo S; Kim K; Cho YH
    Chemphyschem; 2014 Jun; 15(8):1573-6. PubMed ID: 24692326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New opto-plasmonic tweezers for manipulation and rotation of biological cells--design and fabrication.
    Miao X; Lin LY
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4318-21. PubMed ID: 17946622
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy.
    Neuman KC; Nagy A
    Nat Methods; 2008 Jun; 5(6):491-505. PubMed ID: 18511917
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Near-field photonic forces.
    Nieto-Vesperinas M; Chaumet PC; Rahmani A
    Philos Trans A Math Phys Eng Sci; 2004 Apr; 362(1817):719-37. PubMed ID: 15306490
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical forces in hybrid plasmonic waveguides.
    Yang X; Liu Y; Oulton RF; Yin X; Zhang X
    Nano Lett; 2011 Feb; 11(2):321-8. PubMed ID: 21229998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coherent control of plasmonic nanoantennas using optical eigenmodes.
    Kosmeier S; De Luca AC; Zolotovskaya S; Di Falco A; Dholakia K; Mazilu M
    Sci Rep; 2013; 3():1808. PubMed ID: 23657743
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmon-exciton interactions on single thermoresponsive platforms demonstrated by optical tweezers.
    Hormeño S; Bastús NG; Pietsch A; Weller H; Arias-Gonzalez JR; Juárez BH
    Nano Lett; 2011 Nov; 11(11):4742-7. PubMed ID: 22003895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers.
    Habaza M; Gilboa B; Roichman Y; Shaked NT
    Opt Lett; 2015 Apr; 40(8):1881-4. PubMed ID: 25872098
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advances in Surface Plasmon Resonance Imaging and Microscopy and Their Biological Applications.
    Bocková M; Slabý J; Špringer T; Homola J
    Annu Rev Anal Chem (Palo Alto Calif); 2019 Jun; 12(1):151-176. PubMed ID: 30822102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy.
    Hashemi Shabestari M; Meijering AEC; Roos WH; Wuite GJL; Peterman EJG
    Methods Enzymol; 2017; 582():85-119. PubMed ID: 28062046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.