These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 35256530)
1. KCNQ Channels Enable Reliable Presynaptic Spiking and Synaptic Transmission at High Frequency. Zhang Y; Li D; Darwish Y; Fu X; Trussell LO; Huang H J Neurosci; 2022 Apr; 42(16):3305-3315. PubMed ID: 35256530 [TBL] [Abstract][Full Text] [Related]
2. Spike Activity Regulates Vesicle Filling at a Glutamatergic Synapse. Li D; Zhu Y; Huang H J Neurosci; 2020 Jun; 40(26):4972-4980. PubMed ID: 32430294 [TBL] [Abstract][Full Text] [Related]
3. Control of neurotransmitter release by presynaptic waveform at the granule cell to Purkinje cell synapse. Sabatini BL; Regehr WG J Neurosci; 1997 May; 17(10):3425-35. PubMed ID: 9133368 [TBL] [Abstract][Full Text] [Related]
4. Neurotransmitter Release Can Be Stabilized by a Mechanism That Prevents Voltage Changes Near the End of Action Potentials from Affecting Calcium Currents. Clarke SG; Scarnati MS; Paradiso KG J Neurosci; 2016 Nov; 36(45):11559-11572. PubMed ID: 27911759 [TBL] [Abstract][Full Text] [Related]
5. Single Calcium Channel Nanodomains Drive Presynaptic Calcium Entry at Lamprey Reticulospinal Presynaptic Terminals. Ramachandran S; Rodgriguez S; Potcoava M; Alford S J Neurosci; 2022 Mar; 42(12):2385-2403. PubMed ID: 35063999 [TBL] [Abstract][Full Text] [Related]
7. Kv7/KCNQ/M-channels in rat glutamatergic hippocampal axons and their role in regulation of excitability and transmitter release. Vervaeke K; Gu N; Agdestein C; Hu H; Storm JF J Physiol; 2006 Oct; 576(Pt 1):235-56. PubMed ID: 16840518 [TBL] [Abstract][Full Text] [Related]
8. SK Channels Regulate Resting Properties and Signaling Reliability of a Developing Fast-Spiking Neuron. Zhang Y; Huang H J Neurosci; 2017 Nov; 37(44):10738-10747. PubMed ID: 28982705 [TBL] [Abstract][Full Text] [Related]
9. Analog modulation of spike-evoked transmission in CA3 circuits is determined by axonal Kv1.1 channels in a time-dependent manner. Bialowas A; Rama S; Zbili M; Marra V; Fronzaroli-Molinieres L; Ankri N; Carlier E; Debanne D Eur J Neurosci; 2015 Feb; 41(3):293-304. PubMed ID: 25394682 [TBL] [Abstract][Full Text] [Related]
10. Kv3.3 subunits control presynaptic action potential waveform and neurotransmitter release at a central excitatory synapse. Richardson A; Ciampani V; Stancu M; Bondarenko K; Newton S; Steinert JR; Pilati N; Graham BP; Kopp-Scheinpflug C; Forsythe ID Elife; 2022 May; 11():. PubMed ID: 35510987 [TBL] [Abstract][Full Text] [Related]
11. Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. Hu H; Shao LR; Chavoshy S; Gu N; Trieb M; Behrens R; Laake P; Pongs O; Knaus HG; Ottersen OP; Storm JF J Neurosci; 2001 Dec; 21(24):9585-97. PubMed ID: 11739569 [TBL] [Abstract][Full Text] [Related]
12. Activity and Cytosolic Na Zhu Y; Li D; Huang H J Neurosci; 2020 Aug; 40(32):6112-6120. PubMed ID: 32605936 [TBL] [Abstract][Full Text] [Related]
13. Distinct roles of Kv1 and Kv3 potassium channels at the calyx of Held presynaptic terminal. Ishikawa T; Nakamura Y; Saitoh N; Li WB; Iwasaki S; Takahashi T J Neurosci; 2003 Nov; 23(32):10445-53. PubMed ID: 14614103 [TBL] [Abstract][Full Text] [Related]
14. Resistance to action potential depression of a rat axon terminal in vivo. Sierksma MC; Borst JGG Proc Natl Acad Sci U S A; 2017 Apr; 114(16):4249-4254. PubMed ID: 28373550 [TBL] [Abstract][Full Text] [Related]
15. The subthreshold-active K Martinello K; Giacalone E; Migliore M; Brown DA; Shah MM Commun Biol; 2019; 2():145. PubMed ID: 31044170 [TBL] [Abstract][Full Text] [Related]
16. Presynaptic resurgent Na+ currents sculpt the action potential waveform and increase firing reliability at a CNS nerve terminal. Kim JH; Kushmerick C; von Gersdorff H J Neurosci; 2010 Nov; 30(46):15479-90. PubMed ID: 21084604 [TBL] [Abstract][Full Text] [Related]
17. Developmental changes in potassium currents at the rat calyx of Held presynaptic terminal. Nakamura Y; Takahashi T J Physiol; 2007 Jun; 581(Pt 3):1101-12. PubMed ID: 17331991 [TBL] [Abstract][Full Text] [Related]
18. Enhancing the fidelity of neurotransmission by activity-dependent facilitation of presynaptic potassium currents. Yang YM; Wang W; Fedchyshyn MJ; Zhou Z; Ding J; Wang LY Nat Commun; 2014 Jul; 5():4564. PubMed ID: 25078759 [TBL] [Abstract][Full Text] [Related]
19. The Frog Motor Nerve Terminal Has Very Brief Action Potentials and Three Electrical Regions Predicted to Differentially Control Transmitter Release. Ginebaugh SP; Cyphers ED; Lanka V; Ortiz G; Miller EW; Laghaei R; Meriney SD J Neurosci; 2020 Apr; 40(18):3504-3516. PubMed ID: 32265260 [TBL] [Abstract][Full Text] [Related]
20. Changes in action potential duration alter reliance of excitatory synaptic transmission on multiple types of Ca2+ channels in rat hippocampus. Wheeler DB; Randall A; Tsien RW J Neurosci; 1996 Apr; 16(7):2226-37. PubMed ID: 8601803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]