These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35257474)

  • 1. Genome and proteome analyses show the gaseous alkane degrader Desulfosarcina sp. strain BuS5 as an extreme metabolic specialist.
    Chen SC; Ji J; Popp D; Jaekel U; Richnow HH; Sievert SM; Musat F
    Environ Microbiol; 2022 Apr; 24(4):1964-1976. PubMed ID: 35257474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria.
    Kniemeyer O; Musat F; Sievert SM; Knittel K; Wilkes H; Blumenberg M; Michaelis W; Classen A; Bolm C; Joye SB; Widdel F
    Nature; 2007 Oct; 449(7164):898-901. PubMed ID: 17882164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps.
    Jaekel U; Musat N; Adam B; Kuypers M; Grundmann O; Musat F
    ISME J; 2013 May; 7(5):885-95. PubMed ID: 23254512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon and hydrogen stable isotope fractionation associated with the anaerobic degradation of propane and butane by marine sulfate-reducing bacteria.
    Jaekel U; Vogt C; Fischer A; Richnow HH; Musat F
    Environ Microbiol; 2014 Jan; 16(1):130-40. PubMed ID: 24028539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The anaerobic degradation of gaseous, nonmethane alkanes - From in situ processes to microorganisms.
    Musat F
    Comput Struct Biotechnol J; 2015; 13():222-8. PubMed ID: 25904994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps.
    Kleindienst S; Herbst FA; Stagars M; von Netzer F; von Bergen M; Seifert J; Peplies J; Amann R; Musat F; Lueders T; Knittel K
    ISME J; 2014 Oct; 8(10):2029-44. PubMed ID: 24722631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic Oxidation of Ethane, Propane, and Butane by Marine Microbes: A Mini Review.
    Singh R; Guzman MS; Bose A
    Front Microbiol; 2017; 8():2056. PubMed ID: 29109712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome and catabolic subproteomes of the marine, nutritionally versatile, sulfate-reducing bacterium Desulfococcus multivorans DSM 2059.
    Dörries M; Wöhlbrand L; Kube M; Reinhardt R; Rabus R
    BMC Genomics; 2016 Nov; 17(1):918. PubMed ID: 27846794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep.
    Chen SC; Musat N; Lechtenfeld OJ; Paschke H; Schmidt M; Said N; Popp D; Calabrese F; Stryhanyuk H; Jaekel U; Zhu YG; Joye SB; Richnow HH; Widdel F; Musat F
    Nature; 2019 Apr; 568(7750):108-111. PubMed ID: 30918404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of active gaseous-alkane degraders at natural gas seeps.
    Farhan Ul Haque M; Hernández M; Crombie AT; Murrell JC
    ISME J; 2022 Jul; 16(7):1705-1716. PubMed ID: 35319019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrate-driven anaerobic oxidation of ethane and butane by bacteria.
    Wu M; Li J; Lai CY; Leu AO; Sun S; Gu R; Erler DV; Liu L; Li L; Tyson GW; Yuan Z; McIlroy SJ; Guo J
    ISME J; 2024 Jan; 18(1):. PubMed ID: 38365228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic oxidation of propane coupled to nitrate reduction by a lineage within the class Symbiobacteriia.
    Wu M; Li J; Leu AO; Erler DV; Stark T; Tyson GW; Yuan Z; McIlroy SJ; Guo J
    Nat Commun; 2022 Oct; 13(1):6115. PubMed ID: 36253480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering nature for gaseous hydrocarbon production.
    Amer M; Toogood H; Scrutton NS
    Microb Cell Fact; 2020 Nov; 19(1):209. PubMed ID: 33187524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial nitrate reduction in propane- or butane-based membrane biofilm reactors under oxygen-limiting conditions.
    Wu M; Lai CY; Wang Y; Yuan Z; Guo J
    Water Res; 2023 May; 235():119887. PubMed ID: 36947926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proposal of Desulfosarcina ovata subsp. sediminis subsp. nov., a novel toluene-degrading sulfate-reducing bacterium isolated from tidal flat sediment of Tokyo Bay.
    Watanabe M; Higashioka Y; Kojima H; Fukui M
    Syst Appl Microbiol; 2020 Sep; 43(5):126109. PubMed ID: 32847784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propane and n-butane oxidation by Pseudomonas putida GPo1.
    Johnson EL; Hyman MR
    Appl Environ Microbiol; 2006 Jan; 72(1):950-2. PubMed ID: 16391142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes.
    So CM; Young LY
    Appl Environ Microbiol; 1999 Jul; 65(7):2969-76. PubMed ID: 10388691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo evolution of butane oxidation by terminal alkane hydroxylases AlkB and CYP153A6.
    Koch DJ; Chen MM; van Beilen JB; Arnold FH
    Appl Environ Microbiol; 2009 Jan; 75(2):337-44. PubMed ID: 19011057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen limitation and nitrogen fixation during alkane biodegradation in a sandy soil.
    Toccalino PL; Johnson RL; Boone DR
    Appl Environ Microbiol; 1993 Sep; 59(9):2977-83. PubMed ID: 8215369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic hexadecane degradation by a thermophilic Hadarchaeon from Guaymas Basin.
    Benito Merino D; Lipp JS; Borrel G; Boetius A; Wegener G
    ISME J; 2024 Jan; 18(1):. PubMed ID: 38365230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.