These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35257486)

  • 1. Improved Effect of Metal Coordination on Molecular Oxygen Activation for Selective Aerobic Photooxidation.
    Cui JW; Rao CH; Jia MZ; Yao XR; Zhang J
    ChemSusChem; 2022 Apr; 15(8):e202200314. PubMed ID: 35257486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remarkable effect of bimetallic nanocluster catalysts for aerobic oxidation of alcohols: combining metals changes the activities and the reaction pathways to aldehydes/carboxylic acids or esters.
    Kaizuka K; Miyamura H; Kobayashi S
    J Am Chem Soc; 2010 Nov; 132(43):15096-8. PubMed ID: 20931964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired
    Baek J; Si T; Kim HY; Oh K
    Org Lett; 2022 Jul; 24(27):4982-4986. PubMed ID: 35796666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygenation via C-H/C-C Bond Activation with Molecular Oxygen.
    Liang YF; Jiao N
    Acc Chem Res; 2017 Jul; 50(7):1640-1653. PubMed ID: 28636366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TEMPO/HCl/NaNO2 catalyst: a transition-metal-free approach to efficient aerobic oxidation of alcohols to aldehydes and ketones under mild conditions.
    Wang X; Liu R; Jin Y; Liang X
    Chemistry; 2008; 14(9):2679-85. PubMed ID: 18293352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient and Highly Selective Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Bucky Nanodiamond.
    Lin Y; Wu KT; Yu L; Heumann S; Su DS
    ChemSusChem; 2017 Sep; 10(17):3497-3505. PubMed ID: 28665485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient and selective aerobic oxidation of alcohols into aldehydes and ketones using ruthenium/TEMPO as the catalytic system.
    Dijksman A; Marino-González A; Mairata I Payeras A; Arends IW; Sheldon RA
    J Am Chem Soc; 2001 Jul; 123(28):6826-33. PubMed ID: 11448187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective aerobic oxidation of primary alcohols to aldehydes over Nb2O5 photocatalyst with visible light.
    Furukawa S; Shishido T; Teramura K; Tanaka T
    Chemphyschem; 2014 Sep; 15(13):2665-7. PubMed ID: 24986789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoting gold nanocatalysts in solvent-free selective aerobic oxidation of alcohols.
    Zheng N; Stucky GD
    Chem Commun (Camb); 2007 Oct; (37):3862-4. PubMed ID: 18217672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SBA-15-functionalized TEMPO confined ionic liquid: an efficient catalyst system for transition-metal-free aerobic oxidation of alcohols with improved selectivity.
    Karimi B; Badreh E
    Org Biomol Chem; 2011 Jun; 9(11):4194-8. PubMed ID: 21505706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel polyaniline-supported molybdenum-catalyzed aerobic oxidation of alcohols to aldehydes and ketones.
    Velusamy S; Ahamed M; Punniyamurthy T
    Org Lett; 2004 Dec; 6(26):4821-4. PubMed ID: 15606075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exclusively Ligand-Mediated Catalytic Dehydrogenation of Alcohols.
    Sengupta D; Bhattacharjee R; Pramanick R; Rath SP; Saha Chowdhury N; Datta A; Goswami S
    Inorg Chem; 2016 Oct; 55(19):9602-9610. PubMed ID: 27646531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Superoxide Generation on Defective Surfaces for Selective Photooxidation.
    Sun X; Luo X; Zhang X; Xie J; Jin S; Wang H; Zheng X; Wu X; Xie Y
    J Am Chem Soc; 2019 Mar; 141(9):3797-3801. PubMed ID: 30784264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic Effect of Photocatalyst CdS and Thermalcatalyst Cr
    Meng S; Chang S; Chen S
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2531-2538. PubMed ID: 31854184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoelectrochemical Catalysis toward Selective Anaerobic Oxidation of Alcohols.
    Zhang R; Shao M; Li Z; Ning F; Wei M; Evans DG; Duan X
    Chemistry; 2017 Jun; 23(34):8142-8147. PubMed ID: 28485855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ag
    Dong Y; Su Y; Hu Y; Li H; Xie W
    Small; 2020 Nov; 16(47):e2001529. PubMed ID: 33140581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of the C-H bond by electrophilic attack: theoretical study of the reaction mechanism of the aerobic oxidation of alcohols to aldehydes by the Cu(bipy)(2+)/2,2,6,6-tetramethylpiperidinyl-1-oxy cocatalyst system.
    Michel C; Belanzoni P; Gamez P; Reedijk J; Baerends EJ
    Inorg Chem; 2009 Dec; 48(24):11909-20. PubMed ID: 19938864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green photocatalytic organic transformations by polyoxometalates vs. mesoporous TiO2 nanoparticles: selective aerobic oxidation of alcohols.
    Symeonidis TS; Tamiolakis I; Armatas GS; Lykakis IN
    Photochem Photobiol Sci; 2015 Mar; 14(3):563-8. PubMed ID: 25369739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient whole-cell oxidation of α,β-unsaturated alcohols to α,β-unsaturated aldehydes through the cascade biocatalysis of alcohol dehydrogenase, NADPH oxidase and hemoglobin.
    Qiao Y; Wang C; Zeng Y; Wang T; Qiao J; Lu C; Wang Z; Ying X
    Microb Cell Fact; 2021 Jan; 20(1):17. PubMed ID: 33468136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expansion of Substrate Scope for Nitroxyl Radical/Copper-Catalyzed Aerobic Oxidation of Primary Alcohols: A Guideline for Catalyst Selection.
    Sasano Y; Yamaichi A; Sasaki R; Nagasawa S; Iwabuchi Y
    Chem Pharm Bull (Tokyo); 2021; 69(5):488-497. PubMed ID: 33952858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.