These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35257695)

  • 1. Freeze-Dried Monoclonal Antibody Formulations are Unexpectedly More Prone to Degradation Than Liquid Formulations Under Shaking Stress.
    Fang WJ; Ingle RG; Liu JW; Ge XZ; Wang H
    J Pharm Sci; 2022 Jul; 111(7):2134-2138. PubMed ID: 35257695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effects of Excipients on Freeze-dried Monoclonal Antibody Formulation Degradation and Sub-Visible Particle Formation during Shaking.
    Jin MJ; Ge XZ; Huang Q; Liu JW; Ingle RG; Gao D; Fang WJ
    Pharm Res; 2024 Feb; 41(2):321-334. PubMed ID: 38291165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freeze-Dried Biopharmaceutical Formulations are Surprisingly Less Stable than Liquid Formulations during Dropping.
    Fang WJ; Pang MJ; Liu JW; Wang X; Wang H; Sun MF
    Pharm Res; 2022 Apr; 39(4):795-803. PubMed ID: 35314998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein Sub-Visible Particle and Free Radical formation of a Freeze-Dried Monoclonal Antibody Formulation During Dropping.
    Fang WJ; Liu JW; Zheng HJ; Shen BB; Wang X; Kong Y; Jing ZY; Gao JQ
    J Pharm Sci; 2021 Apr; 110(4):1625-1634. PubMed ID: 33049261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Secondary Package on Freeze-Dried Biopharmaceutical Formulation Stability During Dropping.
    Fang WJ; Liu JW; Barnard J; Wang H; Qian YC; Xu J
    J Pharm Sci; 2021 Aug; 110(8):2916-2924. PubMed ID: 33940028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of buffer-free freeze-dried formulations: A feasibility study of a monoclonal antibody at high protein concentrations.
    Garidel P; Pevestorf B; Bahrenburg S
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):125-39. PubMed ID: 26455339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manufacturing of High-Concentration Monoclonal Antibody Formulations via Spray Drying-the Road to Manufacturing Scale.
    Gikanga B; Turok R; Hui A; Bowen M; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2015; 69(1):59-73. PubMed ID: 25691715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary Packages cannot Protect Liquid Biopharmaceutical Formulations from Dropping-Induced Degradation.
    Fang WJ; Liu JW; Gao H; Qian YC; Gao JQ; Wang H
    Pharm Res; 2021 Aug; 38(8):1397-1404. PubMed ID: 34282500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Grinding-Induced Subvisible Particles and Free Radicals in a Freeze-Dried Monoclonal Antibody Formulation.
    Jing ZY; Huo GL; Sun MF; Shen BB; Fang WJ
    Pharm Res; 2022 Feb; 39(2):399-410. PubMed ID: 35083639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Mechanism of Glass Delamination in Type 1A Borosilicate Vials Containing Frozen Protein Formulations.
    Jiang G; Goss M; Li G; Jing W; Shen H; Fujimori K; Le L; Wong L; Wen ZQ; Nashed-Samuel Y; Riker K; Germansderfer A; Tsang P; Ricci M
    PDA J Pharm Sci Technol; 2013; 67(4):323-35. PubMed ID: 23872443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the physical stability of a lyophilized IgG1 mAb after accelerated shipping-like stress.
    Telikepalli S; Kumru OS; Kim JH; Joshi SB; O'Berry KB; Blake-Haskins AW; Perkins MD; Middaugh CR; Volkin DB
    J Pharm Sci; 2015 Feb; 104(2):495-507. PubMed ID: 25522000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic Investigation on Grinding-Induced Subvisible Particle Formation during Mixing and Filling of Monoclonal Antibody Formulations.
    Gikanga B; Hui A; Maa YF
    PDA J Pharm Sci Technol; 2018; 72(2):117-133. PubMed ID: 29030532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze drying of L-arginine/sucrose-based protein formulations, part I: influence of formulation and arginine counter ion on the critical formulation temperature, product performance and protein stability.
    Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P
    J Pharm Sci; 2015 Jul; 104(7):2345-58. PubMed ID: 25994980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Protein-Excipient Microheterogeneity in Biopharmaceutical Solid-State Formulations by Confocal Fluorescence Microscopy.
    Koshari SH; Ross JL; Nayak PK; Zarraga IE; Rajagopal K; Wagner NJ; Lenhoff AM
    Mol Pharm; 2017 Feb; 14(2):546-553. PubMed ID: 28094996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of dextran on thermal properties, product quality attributes, and monoclonal antibody stability in freeze-dried formulations.
    Haeuser C; Goldbach P; Huwyler J; Friess W; Allmendinger A
    Eur J Pharm Biopharm; 2020 Feb; 147():45-56. PubMed ID: 31866444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled polysorbate 20 hydrolysis - A new approach to assess the impact of polysorbate 20 degradation on biopharmaceutical product quality in shortened time.
    Graf T; Abstiens K; Wedekind F; Elger C; Haindl M; Wurth C; Leiss M
    Eur J Pharm Biopharm; 2020 Jul; 152():318-326. PubMed ID: 32445968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How spray drying processing and solution composition can affect the mAbs stability in reconstituted solutions for subcutaneous injections. Part I: Contribution of processing stresses against composition.
    Barceló-Chong CM; Filipe V; Nakach M; Ré MI
    Int J Pharm; 2024 Apr; 655():123925. PubMed ID: 38518870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freeze-drying: A flourishing strategy to fabricate stable pharmaceutical and biological products.
    Abla KK; Mehanna MM
    Int J Pharm; 2022 Nov; 628():122233. PubMed ID: 36183914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggressive conditions during primary drying as a contemporary approach to optimise freeze-drying cycles of biopharmaceuticals.
    Bjelošević M; Seljak KB; Trstenjak U; Logar M; Brus B; Ahlin Grabnar P
    Eur J Pharm Sci; 2018 Sep; 122():292-302. PubMed ID: 30006178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-State Hydrogen-Deuterium Exchange Mass Spectrometry: Correlation of Deuterium Uptake and Long-Term Stability of Lyophilized Monoclonal Antibody Formulations.
    Moorthy BS; Zarraga IE; Kumar L; Walters BT; Goldbach P; Topp EM; Allmendinger A
    Mol Pharm; 2018 Jan; 15(1):1-11. PubMed ID: 29182876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.