BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 35257753)

  • 1. High-efficiency capture and removal of phosphate from wastewater by 3D hierarchical functional biomass-derived carbon aerogel.
    Jiao GJ; Ma J; Zhang J; Zhou J; Sun R
    Sci Total Environ; 2022 Jun; 827():154343. PubMed ID: 35257753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced adsorption activity for phosphate removal by functional lignin-derived carbon-based adsorbent: Optimization, performance and evaluation.
    Jiao GJ; Ma J; Li Y; Jin D; Guo Y; Zhou J; Sun R
    Sci Total Environ; 2021 Mar; 761():143217. PubMed ID: 33162139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient removal of phosphate from aqueous media using magnetic bimetallic lanthanum‑iron-modified sulfonylmethylated lignin biochar.
    Cui R; Ma J; Jiao G; Sun R
    Int J Biol Macromol; 2023 Aug; 247():125809. PubMed ID: 37453645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced lead and copper removal in wastewater by adsorption onto magnesium oxide homogeneously embedded hierarchical porous biochar.
    Wei Y; Chen T; Qiu Z; Liu H; Xia Y; Wang Z; Zou R; Liu C
    Bioresour Technol; 2022 Dec; 365():128146. PubMed ID: 36261111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-dependent magnesium citrate modified formation of MgO nanoparticles biochar composites with efficient phosphate removal.
    Zhu D; Yang H; Chen X; Chen W; Cai N; Chen Y; Zhang S; Chen H
    Chemosphere; 2021 Jul; 274():129904. PubMed ID: 33979927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous MgO-modified biochar adsorbents fabricated by the activation of Mg(NO
    Liang H; Wang W; Liu H; Deng X; Zhang D; Zou Y; Ruan X
    Chemosphere; 2023 May; 324():138320. PubMed ID: 36905997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [MgO-Biochar for the Adsorption of Phosphate in Water].
    Wang BB; Lin JD; Wan SL; He F
    Huan Jing Ke Xue; 2017 Jul; 38(7):2859-2867. PubMed ID: 29964626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasible synthesis of a novel and low-cost seawater-modified biochar and its potential application in phosphate removal/recovery from wastewater.
    Zhang M; He M; Chen Q; Huang Y; Zhang C; Yue C; Yang L; Mu J
    Sci Total Environ; 2022 Jun; 824():153833. PubMed ID: 35151752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renewable cellulose aerogel embedded with nano-HFO for preferable phosphate capture from aqueous solution.
    Sang M; Weng J; Chen X; Nie G
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):26613-26624. PubMed ID: 36371568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of phosphate from aqueous solution using MgO-modified magnetic biochar derived from anaerobic digestion residue.
    Liu J; Jiang J; Aihemaiti A; Meng Y; Yang M; Xu Y; Gao Y; Zou Q; Chen X
    J Environ Manage; 2019 Nov; 250():109438. PubMed ID: 31479938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of magnesium oxide nanoparticle-containing biochar composites for efficient phosphorus removal from aqueous solution.
    Zhu D; Chen Y; Yang H; Wang S; Wang X; Zhang S; Chen H
    Chemosphere; 2020 May; 247():125847. PubMed ID: 32069709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly efficient As(III) removal in water using millimeter-sized porous granular MgO-biochar with high adsorption capacity.
    Chen T; Wei Y; Yang W; Liu C
    J Hazard Mater; 2021 Aug; 416():125822. PubMed ID: 34492784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Black liquor-derived calcium-activated biochar for recovery of phosphate from aqueous solutions.
    Liu X; Shen F; Smith RL; Qi X
    Bioresour Technol; 2019 Dec; 294():122198. PubMed ID: 31574367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of tannery solid waste to an adsorbent for high-efficiency dye removal from tannery wastewater: A road to circular utilization.
    Tang Y; Zhao J; Zhang Y; Zhou J; Shi B
    Chemosphere; 2021 Jan; 263():127987. PubMed ID: 32835980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate capture from biogas slurry with magnesium-doped biochar composite derived from Lycium chinensis branch filings: performance, mechanism, and effect of coexisting ions.
    Li Y; Azeem M; Luo Y; Peng Y; Feng C; Li R; Peng J; Zhang L; Wang H; Zhang Z
    Environ Sci Pollut Res Int; 2022 Dec; 29(56):84873-84885. PubMed ID: 35789464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced removal of phosphate from aqueous solutions by oxygen vacancy-rich MgO microspheres: Performance and mechanism.
    Hu Q; Pang S; Li Y; Huang L; Zhang Y; Xu X; Pei X
    Chemosphere; 2024 May; 355():141776. PubMed ID: 38522667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnesium oxide nanoparticles modified biochar derived from tea wastes for enhanced adsorption of o-chlorophenol from industrial wastewater.
    Chu TTH; Tran TMN; Pham MT; Viet NM; Thi HP
    Chemosphere; 2023 Oct; 337():139342. PubMed ID: 37392798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Key roles of the crystal structures of MgO-biochar nanocomposites for enhancing phosphate adsorption.
    Luo H; Wang Y; Wen X; Cheng S; Li J; Lin Q
    Sci Total Environ; 2021 Apr; 766():142618. PubMed ID: 33069464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of ammonia nitrogen and phosphate from livestock farm wastewater by iron-magnesium oxide coupled lignite and its potential for resource utilization.
    An W; Wang Q; Chen H; Di J; Hu X
    Environ Sci Pollut Res Int; 2024 Feb; 31(6):8930-8951. PubMed ID: 38183541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental application of engineering magnesite slag for phosphate adsorption from wastewater.
    Liang H; Guo P; Yang Y; Wang W; Sun Z
    Environ Sci Pollut Res Int; 2022 Aug; 29(39):59502-59512. PubMed ID: 35381926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.