BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35257829)

  • 1. Deleting the β-catenin degradation domain in mouse hepatocytes drives hepatocellular carcinoma or hepatoblastoma-like tumor growth.
    Loesch R; Caruso S; Paradis V; Godard C; Gougelet A; Renault G; Picard S; Tanaka I; Renoux-Martin Y; Perret C; Taketo MM; Zucman-Rossi J; Colnot S
    J Hepatol; 2022 Aug; 77(2):424-435. PubMed ID: 35257829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AXIN deficiency in human and mouse hepatocytes induces hepatocellular carcinoma in the absence of β-catenin activation.
    Abitbol S; Dahmani R; Coulouarn C; Ragazzon B; Mlecnik B; Senni N; Savall M; Bossard P; Sohier P; Drouet V; Tournier E; Dumont F; Sanson R; Calderaro J; Zucman-Rossi J; Vasseur-Cognet M; Just PA; Terris B; Perret C; Gilgenkrantz H
    J Hepatol; 2018 Jun; 68(6):1203-1213. PubMed ID: 29525529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Notch activity characterizes a common hepatocellular carcinoma subtype with unique molecular and clinicopathologic features.
    Zhu C; Ho YJ; Salomao MA; Dapito DH; Bartolome A; Schwabe RF; Lee JS; Lowe SW; Pajvani UB
    J Hepatol; 2021 Mar; 74(3):613-626. PubMed ID: 33038431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hepatocellular Carcinomas With Mutational Activation of Beta-Catenin Require Choline and Can Be Detected by Positron Emission Tomography.
    Gougelet A; Sartor C; Senni N; Calderaro J; Fartoux L; Lequoy M; Wendum D; Talbot JN; Prignon A; Chalaye J; Imbeaud S; Zucman-Rossi J; Tordjmann T; Godard C; Bossard P; Rosmorduc O; Amaddeo G; Colnot S
    Gastroenterology; 2019 Sep; 157(3):807-822. PubMed ID: 31194980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DLK1/DIO3 locus upregulation by a β-catenin-dependent enhancer drives cell proliferation and liver tumorigenesis.
    Sanceau J; Poupel L; Joubel C; Lagoutte I; Caruso S; Pinto S; Desbois-Mouthon C; Godard C; Hamimi A; Montmory E; Dulary C; Chantalat S; Roehrig A; Muret K; Saint-Pierre B; Deleuze JF; Mouillet-Richard S; Forné T; Grosset CF; Zucman-Rossi J; Colnot S; Gougelet A
    Mol Ther; 2024 Apr; 32(4):1125-1143. PubMed ID: 38311851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas.
    Colnot S; Decaens T; Niwa-Kawakita M; Godard C; Hamard G; Kahn A; Giovannini M; Perret C
    Proc Natl Acad Sci U S A; 2004 Dec; 101(49):17216-21. PubMed ID: 15563600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique phenotype of hepatocellular cancers with exon-3 mutations in beta-catenin gene.
    Cieply B; Zeng G; Proverbs-Singh T; Geller DA; Monga SP
    Hepatology; 2009 Mar; 49(3):821-31. PubMed ID: 19101982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LKB1 signaling is activated in CTNNB1-mutated HCC and positively regulates β-catenin-dependent CTNNB1-mutated HCC.
    Charawi S; Just PA; Savall M; Abitbol S; Traore M; Metzger N; Ravinger R; Cavard C; Terris B; Perret C
    J Pathol; 2019 Apr; 247(4):435-443. PubMed ID: 30566242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of Apc Cooperates with Activated Oncogenes to Induce Liver Tumor Formation in Mice.
    Zhang Y; Liang B; Song X; Wang H; Evert M; Zhou Y; Calvisi DF; Tang L; Chen X
    Am J Pathol; 2021 May; 191(5):930-946. PubMed ID: 33545120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic activation of β-catenin signaling by CRISPR/Cas9-mediated exon skipping contributes to immune evasion in hepatocellular carcinoma.
    Akasu M; Shimada S; Kabashima A; Akiyama Y; Shimokawa M; Akahoshi K; Kudo A; Yamaoka S; Tanabe M; Tanaka S
    Sci Rep; 2021 Aug; 11(1):16732. PubMed ID: 34429454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta-catenin accumulation and mutation of the CTNNB1 gene in hepatoblastoma.
    Bläker H; Hofmann WJ; Rieker RJ; Penzel R; Graf M; Otto HF
    Genes Chromosomes Cancer; 1999 Aug; 25(4):399-402. PubMed ID: 10398436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotype and growth behavior of residual β-catenin-positive hepatocytes in livers of β-catenin-deficient mice.
    Braeuning A; Singh Y; Rignall B; Buchmann A; Hammad S; Othman A; von Recklinghausen I; Godoy P; Hoehme S; Drasdo D; Hengstler JG; Schwarz M
    Histochem Cell Biol; 2010 Nov; 134(5):469-81. PubMed ID: 20886225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel tissue-based ß-catenin gene and immunohistochemical analysis to exclude familial adenomatous polyposis among children with hepatoblastoma tumors.
    Dubbink HJ; Hollink IHIM; Avenca Valente C; Wang W; Liu P; Doukas M; van Noesel MM; Dinjens WNM; Wagner A; Smits R
    Pediatr Blood Cancer; 2018 Jun; 65(6):e26991. PubMed ID: 29446530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Germline and somatic DICER1 mutations in familial and sporadic liver tumors.
    Caruso S; Calderaro J; Letouzé E; Nault JC; Couchy G; Boulai A; Luciani A; Zafrani ES; Bioulac-Sage P; Seror O; Imbeaud S; Zucman-Rossi J
    J Hepatol; 2017 Apr; 66(4):734-742. PubMed ID: 28012864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear factor erythroid 2-related factor 2 and β-Catenin Coactivation in Hepatocellular Cancer: Biological and Therapeutic Implications.
    Tao J; Krutsenko Y; Moghe A; Singh S; Poddar M; Bell A; Oertel M; Singhi AD; Geller D; Chen X; Lujambio A; Liu S; Monga SP
    Hepatology; 2021 Aug; 74(2):741-759. PubMed ID: 33529367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hepatomas with activating Ctnnb1 mutations in 'Ctnnb1-deficient' livers: a tricky aspect of a conditional knockout mouse model.
    Sekine S; Ogawa R; Kanai Y
    Carcinogenesis; 2011 Apr; 32(4):622-8. PubMed ID: 21216847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of β-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice.
    Tao J; Calvisi DF; Ranganathan S; Cigliano A; Zhou L; Singh S; Jiang L; Fan B; Terracciano L; Armeanu-Ebinger S; Ribback S; Dombrowski F; Evert M; Chen X; Monga SPS
    Gastroenterology; 2014 Sep; 147(3):690-701. PubMed ID: 24837480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global increase of p16INK4a in APC-deficient mouse liver drives clonal growth of p16INK4a-negative tumors.
    Ueberham E; Glöckner P; Göhler C; Straub BK; Teupser D; Schönig K; Braeuning A; Höhn AK; Jerchow B; Birchmeier W; Gaunitz F; Arendt T; Sansom O; Gebhardt R; Ueberham U
    Mol Cancer Res; 2015 Feb; 13(2):239-49. PubMed ID: 25270420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conditional disruption of Axin1 leads to development of liver tumors in mice.
    Feng GJ; Cotta W; Wei XQ; Poetz O; Evans R; Jardé T; Reed K; Meniel V; Williams GT; Clarke AR; Dale TC
    Gastroenterology; 2012 Dec; 143(6):1650-9. PubMed ID: 22960659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-induced exon skipping of β-catenin reveals tumorigenic mutants driving distinct subtypes of liver cancer.
    Mou H; Eskiocak O; Özler KA; Gorman M; Yue J; Jin Y; Wang Z; Gao Y; Janowitz T; Meyer HV; Yu T; Wilkinson JE; Kucukural A; Ozata DM; Beyaz S
    J Pathol; 2023 Apr; 259(4):415-427. PubMed ID: 36641763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.