These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 35257860)
1. Nano-targeting vascular remodeling in cancer: Recent developments and future directions. Giordo R; Wehbe Z; Paliogiannis P; Eid AH; Mangoni AA; Pintus G Semin Cancer Biol; 2022 Nov; 86(Pt 2):784-804. PubMed ID: 35257860 [TBL] [Abstract][Full Text] [Related]
2. Broad targeting of angiogenesis for cancer prevention and therapy. Wang Z; Dabrosin C; Yin X; Fuster MM; Arreola A; Rathmell WK; Generali D; Nagaraju GP; El-Rayes B; Ribatti D; Chen YC; Honoki K; Fujii H; Georgakilas AG; Nowsheen S; Amedei A; Niccolai E; Amin A; Ashraf SS; Helferich B; Yang X; Guha G; Bhakta D; Ciriolo MR; Aquilano K; Chen S; Halicka D; Mohammed SI; Azmi AS; Bilsland A; Keith WN; Jensen LD Semin Cancer Biol; 2015 Dec; 35 Suppl(Suppl):S224-S243. PubMed ID: 25600295 [TBL] [Abstract][Full Text] [Related]
3. Smart Nanotherapeutic Targeting of Tumor Vasculature. Li Z; Di C; Li S; Yang X; Nie G Acc Chem Res; 2019 Sep; 52(9):2703-2712. PubMed ID: 31433171 [TBL] [Abstract][Full Text] [Related]
4. Oncogenes and tumor angiogenesis: the question of vascular "supply" and vascular "demand". Rak J; Yu JL Semin Cancer Biol; 2004 Apr; 14(2):93-104. PubMed ID: 15018893 [TBL] [Abstract][Full Text] [Related]
5. Delta-like ligand 4-targeted nanomedicine for antiangiogenic cancer therapy. Liu YR; Guan YY; Luan X; Lu Q; Wang C; Liu HJ; Gao YG; Yang SC; Dong X; Chen HZ; Fang C Biomaterials; 2015 Feb; 42():161-71. PubMed ID: 25542804 [TBL] [Abstract][Full Text] [Related]
6. Computer Simulations of the Tumor Vasculature: Applications to Interstitial Fluid Flow, Drug Delivery, and Oxygen Supply. Welter M; Rieger H Adv Exp Med Biol; 2016; 936():31-72. PubMed ID: 27739042 [TBL] [Abstract][Full Text] [Related]
8. Angiogenesis: new targets for the development of anticancer chemotherapies. Gourley M; Williamson JS Curr Pharm Des; 2000 Mar; 6(4):417-39. PubMed ID: 10788590 [TBL] [Abstract][Full Text] [Related]
9. Normalization of the vasculature for treatment of cancer and other diseases. Goel S; Duda DG; Xu L; Munn LL; Boucher Y; Fukumura D; Jain RK Physiol Rev; 2011 Jul; 91(3):1071-121. PubMed ID: 21742796 [TBL] [Abstract][Full Text] [Related]
10. Anti-Angiogenic Therapy: Current Challenges and Future Perspectives. Lopes-Coelho F; Martins F; Pereira SA; Serpa J Int J Mol Sci; 2021 Apr; 22(7):. PubMed ID: 33916438 [TBL] [Abstract][Full Text] [Related]
11. Recent Advancements of Nanomedicine towards Antiangiogenic Therapy in Cancer. Mukherjee A; Madamsetty VS; Paul MK; Mukherjee S Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936832 [TBL] [Abstract][Full Text] [Related]
12. Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor. Zhao Y; Adjei AA Oncologist; 2015 Jun; 20(6):660-73. PubMed ID: 26001391 [TBL] [Abstract][Full Text] [Related]
13. Effective treatment of intractable diseases using nanoparticles to interfere with vascular supply and angiogenic process. Hoseinzadeh A; Ghoddusi Johari H; Anbardar MH; Tayebi L; Vafa E; Abbasi M; Vaez A; Golchin A; Amani AM; Jangjou A Eur J Med Res; 2022 Nov; 27(1):232. PubMed ID: 36333816 [TBL] [Abstract][Full Text] [Related]
14. Reassessing vascular endothelial growth factor (VEGF) in anti-angiogenic cancer therapy. Elebiyo TC; Rotimi D; Evbuomwan IO; Maimako RF; Iyobhebhe M; Ojo OA; Oluba OM; Adeyemi OS Cancer Treat Res Commun; 2022; 32():100620. PubMed ID: 35964475 [TBL] [Abstract][Full Text] [Related]
15. Anti-angiogenesis in cancer therapeutics: the magic bullet. Oguntade AS; Al-Amodi F; Alrumayh A; Alobaida M; Bwalya M J Egypt Natl Canc Inst; 2021 Jul; 33(1):15. PubMed ID: 34212275 [TBL] [Abstract][Full Text] [Related]
16. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Fukumura D; Jain RK Microvasc Res; 2007; 74(2-3):72-84. PubMed ID: 17560615 [TBL] [Abstract][Full Text] [Related]
17. Advances in tumor vascular growth inhibition. Zhang K; Shi Y; Jin Z; He J Clin Transl Oncol; 2024 Sep; 26(9):2084-2096. PubMed ID: 38504070 [TBL] [Abstract][Full Text] [Related]
18. Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth. Gacche RN; Meshram RJ Prog Biophys Mol Biol; 2013 Nov; 113(2):333-54. PubMed ID: 24139944 [TBL] [Abstract][Full Text] [Related]
19. An Overview of Cancer Biology, Pathophysiological Development and It's Treatment Modalities: Current Challenges of Cancer anti-Angiogenic Therapy. Al-Ostoot FH; Salah S; Khanum SA Cancer Invest; 2024 Aug; 42(7):559-604. PubMed ID: 38874308 [TBL] [Abstract][Full Text] [Related]
20. Vascular endothelial cell growth factor (VEGF), an emerging target for cancer chemotherapy. Shinkaruk S; Bayle M; Laïn G; Déléris G Curr Med Chem Anticancer Agents; 2003 Mar; 3(2):95-117. PubMed ID: 12678905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]