These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 3525788)

  • 41. CE characterization of semiconductor nanocrystals encapsulated with amorphous silicium dioxide.
    Pyell U
    Electrophoresis; 2008 Feb; 29(3):576-89. PubMed ID: 18228534
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Comparison of Streaming and Microelectrophoresis Methods for Obtaining the zeta Potential of Granular Porous Media Surfaces.
    Johnson PR
    J Colloid Interface Sci; 1999 Jan; 209(1):264-267. PubMed ID: 9878164
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrokinetic behavior and colloidal stability of polystyrene latex coated with ionic surfactants.
    Jódar-Reyes AB; Ortega-Vinuesa JL; Martín-Rodríguez A
    J Colloid Interface Sci; 2006 May; 297(1):170-81. PubMed ID: 16289188
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations.
    Kirby BJ; Hasselbrink EF
    Electrophoresis; 2004 Jan; 25(2):187-202. PubMed ID: 14743473
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stability of nano-/microsized particles in deionized water and electroless nickel solutions.
    Necula BS; Apachitei I; Fratila-Apachitei LE; Teodosiu C; Duszczyk J
    J Colloid Interface Sci; 2007 Oct; 314(2):514-22. PubMed ID: 17628585
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dispersion stability of a ceramic glaze achieved through ionic surfactant adsorption.
    Panya P; Arquero OA; Franks GV; Wanless EJ
    J Colloid Interface Sci; 2004 Nov; 279(1):23-35. PubMed ID: 15380408
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Determination of the zeta potential of porous substrates by droplet deflection: II. Generation of electrokinetic flow in a nonpolar liquid.
    Barz DP; Vogel MJ; Steen PH
    Langmuir; 2010 Mar; 26(5):3126-33. PubMed ID: 19928880
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrophoretic mobility of colloidal gold particles in electrolyte solutions.
    Agnihotri SM; Ohshima H; Terada H; Tomoda K; Makino K
    Langmuir; 2009 Apr; 25(8):4804-7. PubMed ID: 19366230
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ice/Water Interface: Zeta Potential, Point of Zero Charge, and Hydrophobicity.
    Drzymala J; Sadowski Z; Holysz L; Chibowski E
    J Colloid Interface Sci; 1999 Dec; 220(2):229-234. PubMed ID: 10607438
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Measuring zeta potential of protein nano-particles using electroacoustics.
    Dukhin AS; Parlia S
    Colloids Surf B Biointerfaces; 2014 Sep; 121():257-63. PubMed ID: 25001190
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Studies of the zeta potential of cells and a silica particle in varying concentrations of albumin, calcium, sodium, plasma, and bile.
    Gardner B
    J Lab Clin Med; 1969 Feb; 73(2):202-9. PubMed ID: 4303462
    [No Abstract]   [Full Text] [Related]  

  • 52. Electrostatic interactions as a predictor for osteoblast attachment to biomaterials.
    Smith IO; Baumann MJ; McCabe LR
    J Biomed Mater Res A; 2004 Sep; 70(3):436-41. PubMed ID: 15293317
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrophoresis of Spherical Particles with a Random Distribution of Zeta Potential or Surface Charge.
    Velegol D; Feick JD; Collins LR
    J Colloid Interface Sci; 2000 Oct; 230(1):114-121. PubMed ID: 10998294
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intraarterial protamine sulfate reduces the magnitude of streaming potentials in living canine tibia.
    Otter MW; Wu DD; Bieber WA; Cochran GV
    Calcif Tissue Int; 1993 Dec; 53(6):411-5. PubMed ID: 8293355
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrokinetic transport in nanochannels. 2. Experiments.
    Pennathur S; Santiago JG
    Anal Chem; 2005 Nov; 77(21):6782-9. PubMed ID: 16255574
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Electrokinetic properties of sulfate-reducing bacteria].
    Ulanovskiĭ IB; Rudenko EK; Suprun EA; Ledenev AV
    Mikrobiologiia; 1980; 49(1):117-22. PubMed ID: 7392983
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An improved method for determining zeta potential and pore conductivity of porous materials.
    Lu F; How TY; Kwok DY
    J Colloid Interface Sci; 2006 Jul; 299(2):972-6. PubMed ID: 16631186
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of the "DSPM" model on a titania membrane: measurements of charged and uncharged solute retention, electrokinetic charge, pore size, and water permeability.
    Labbez C; Fievet P; Thomas F; Szymczyk A; Vidonne A; Foissy A; Pagetti P
    J Colloid Interface Sci; 2003 Jun; 262(1):200-11. PubMed ID: 16256596
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles.
    Grimes BA; Liapis AI
    J Colloid Interface Sci; 2001 Feb; 234(1):223-243. PubMed ID: 11161509
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reformation of casein particles from alkaline-disrupted casein micelles.
    Huppertz T; Vaia B; Smiddy MA
    J Dairy Res; 2008 Feb; 75(1):44-7. PubMed ID: 18226300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.