These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35257968)

  • 21. Region-specific phenological sensitivities and rates of climate warming generate divergent temporal shifts in flowering date across a species' range.
    Love NLR; Mazer SJ
    Am J Bot; 2021 Oct; 108(10):1873-1888. PubMed ID: 34642935
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phenological responses of 215 moth species to interannual climate variation in the Pacific Northwest from 1895 through 2013.
    Maurer JA; Shepard JH; Crabo LG; Hammond PC; Zack RS; Peterson MA
    PLoS One; 2018; 13(9):e0202850. PubMed ID: 30208046
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seasonal variation in dragonfly assemblage colouration suggests a link between thermal melanism and phenology.
    Novella-Fernandez R; Brandl R; Pinkert S; Zeuss D; Hof C
    Nat Commun; 2023 Dec; 14(1):8427. PubMed ID: 38114459
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elevated temperatures translate into reduced dispersal abilities in a natural population of an aquatic insect.
    Jourdan J; Baranov V; Wagner R; Plath M; Haase P
    J Anim Ecol; 2019 Oct; 88(10):1498-1509. PubMed ID: 31264217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phenological synchrony between a butterfly and its host plants: Experimental test of effects of spring temperature.
    Posledovich D; Toftegaard T; Wiklund C; Ehrlén J; Gotthard K
    J Anim Ecol; 2018 Jan; 87(1):150-161. PubMed ID: 29048758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Linking inter-annual variation in environment, phenology, and abundance for a montane butterfly community.
    Stewart JE; Illán JG; Richards SA; Gutiérrez D; Wilson RJ
    Ecology; 2020 Jan; 101(1):e02906. PubMed ID: 31560801
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How do phenology, plasticity, and evolution determine the fitness consequences of climate change for montane butterflies?
    Kingsolver JG; Buckley LB
    Evol Appl; 2018 Sep; 11(8):1231-1244. PubMed ID: 30151036
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting the sensitivity of butterfly phenology to temperature over the past century.
    Kharouba HM; Paquette SR; Kerr JT; Vellend M
    Glob Chang Biol; 2014 Feb; 20(2):504-14. PubMed ID: 24249425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Species-specific phenological trends in shallow Pampean lakes' (Argentina) zooplankton driven by contemporary climate change in the Southern Hemisphere.
    Diovisalvi N; Odriozola M; Garcia de Souza J; Rojas Molina F; Fontanarrosa MS; Escaray R; Bustingorry J; Sanzano P; Grosman F; Zagarese H
    Glob Chang Biol; 2018 Nov; 24(11):5137-5148. PubMed ID: 30112780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flowering date of taxonomic families predicts phenological sensitivity to temperature: Implications for forecasting the effects of climate change on unstudied taxa.
    Mazer SJ; Travers SE; Cook BI; Davies TJ; Bolmgren K; Kraft NJ; Salamin N; Inouye DW
    Am J Bot; 2013 Jul; 100(7):1381-97. PubMed ID: 23752756
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differences in spatial versus temporal reaction norms for spring and autumn phenological events.
    Delgado MDM; Roslin T; Tikhonov G; Meyke E; Lo C; Gurarie E; Abadonova M; Abduraimov O; Adrianova O; Akimova T; Akkiev M; Ananin A; Andreeva E; Andriychuk N; Antipin M; Arzamascev K; Babina S; Babushkin M; Bakin O; Barabancova A; Basilskaja I; Belova N; Belyaeva N; Bespalova T; Bisikalova E; Bobretsov A; Bobrov V; Bobrovskyi V; Bochkareva E; Bogdanov G; Bolshakov V; Bondarchuk S; Bukharova E; Butunina A; Buyvolov Y; Buyvolova A; Bykov Y; Chakhireva E; Chashchina O; Cherenkova N; Chistjakov S; Chuhontseva S; Davydov EA; Demchenko V; Diadicheva E; Dobrolyubov A; Dostoyevskaya L; Drovnina S; Drozdova Z; Dubanaev A; Dubrovsky Y; Elsukov S; Epova L; Ermakova OS; Ermakova O; Esengeldenova A; Evstigneev O; Fedchenko I; Fedotova V; Filatova T; Gashev S; Gavrilov A; Gaydysh I; Golovcov D; Goncharova N; Gorbunova E; Gordeeva T; Grishchenko V; Gromyko L; Hohryakov V; Hritankov A; Ignatenko E; Igosheva S; Ivanova U; Ivanova N; Kalinkin Y; Kaygorodova E; Kazansky F; Kiseleva D; Knorre A; Kolpashikov L; Korobov E; Korolyova H; Korotkikh N; Kosenkov G; Kossenko S; Kotlugalyamova E; Kozlovsky E; Kozsheechkin V; Kozurak A; Kozyr I; Krasnopevtseva A; Kruglikov S; Kuberskaya O; Kudryavtsev A; Kulebyakina E; Kulsha Y; Kupriyanova M; Kurbanbagamaev M; Kutenkov A; Kutenkova N; Kuyantseva N; Kuznetsov A; Larin E; Lebedev P; Litvinov K; Luzhkova N; Mahmudov A; Makovkina L; Mamontov V; Mayorova S; Megalinskaja I; Meydus A; Minin A; Mitrofanov O; Motruk M; Myslenkov A; Nasonova N; Nemtseva N; Nesterova I; Nezdoliy T; Niroda T; Novikova T; Panicheva D; Pavlov A; Pavlova K; Van P; Podolski S; Polikarpova N; Polyanskaya T; Pospelov I; Pospelova E; Prokhorov I; Prokosheva I; Puchnina L; Putrashyk I; Raiskaya J; Rozhkov Y; Rozhkova O; Rudenko M; Rybnikova I; Rykova S; Sahnevich M; Samoylov A; Sanko V; Sapelnikova I; Sazonov S; Selyunina Z; Shalaeva K; Shashkov M; Shcherbakov A; Shevchyk V; Shubin S; Shujskaja E; Sibgatullin R; Sikkila N; Sitnikova E; Sivkov A; Skok N; Skorokhodova S; Smirnova E; Sokolova G; Sopin V; Spasovski Y; Stepanov S; Stratiy V; Strekalovskaya V; Sukhov A; Suleymanova G; Sultangareeva L; Teleganova V; Teplov V; Teplova V; Tertitsa T; Timoshkin V; Tirski D; Tolmachev A; Tomilin A; Tselishcheva L; Turgunov M; Tyukh Y; Van V; Ershkova E; Vasin A; Vasina A; Vekliuk A; Vetchinnikova L; Vinogradov V; Volodchenkov N; Voloshina I; Xoliqov T; Yablonovska-Grishchenko E; Yakovlev V; Yakovleva M; Yantser O; Yarema Y; Zahvatov A; Zakharov V; Zelenetskiy N; Zheltukhin A; Zubina T; Kurhinen J; Ovaskainen O
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31249-31258. PubMed ID: 33229550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperate insects with narrow seasonal activity periods can be as vulnerable to climate change as tropical insect  species.
    Johansson F; Orizaola G; Nilsson-Örtman V
    Sci Rep; 2020 Jun; 10(1):8822. PubMed ID: 32483233
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phenological sensitivity to climate across taxa and trophic levels.
    Thackeray SJ; Henrys PA; Hemming D; Bell JR; Botham MS; Burthe S; Helaouet P; Johns DG; Jones ID; Leech DI; Mackay EB; Massimino D; Atkinson S; Bacon PJ; Brereton TM; Carvalho L; Clutton-Brock TH; Duck C; Edwards M; Elliott JM; Hall SJ; Harrington R; Pearce-Higgins JW; Høye TT; Kruuk LE; Pemberton JM; Sparks TH; Thompson PM; White I; Winfield IJ; Wanless S
    Nature; 2016 Jul; 535(7611):241-5. PubMed ID: 27362222
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Disentangling climate change effects on species interactions: effects of temperature, phenological shifts, and body size.
    Rudolf VH; Singh M
    Oecologia; 2013 Nov; 173(3):1043-52. PubMed ID: 23670600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Climate drivers of adult insect activity are conditioned by life history traits.
    Belitz MW; Barve V; Doby JR; Hantak MM; Larsen EA; Li D; Oswald JA; Sewnath N; Walters M; Barve N; Earl K; Gardner N; Guralnick RP; Stucky BJ
    Ecol Lett; 2021 Dec; 24(12):2687-2699. PubMed ID: 34636143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason.
    Güsewell S; Furrer R; Gehrig R; Pietragalla B
    Glob Chang Biol; 2017 Dec; 23(12):5189-5202. PubMed ID: 28586135
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vertebrate Phenological Plasticity: From Molecular Mechanisms to Ecological and Evolutionary Implications.
    Aubry LM; Williams CT
    Integr Comp Biol; 2022 Oct; 62(4):958-971. PubMed ID: 35867980
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Climate change-mediated temperature extremes and insects: From outbreaks to breakdowns.
    Harvey JA; Heinen R; Gols R; Thakur MP
    Glob Chang Biol; 2020 Dec; 26(12):6685-6701. PubMed ID: 33006246
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem.
    Asch RG
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):E4065-74. PubMed ID: 26159416
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrating experiments to predict interactive cue effects on spring phenology with warming.
    Wolkovich EM; Chamberlain CJ; Buonaiuto DM; Ettinger AK; Morales-Castilla I
    New Phytol; 2022 Sep; 235(5):1719-1728. PubMed ID: 35599356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.