BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35258058)

  • 1. Co-assembly of a multicomponent network of nanofiber-wrapped nanotubes.
    Mason ML; Lin T; Linville JJ; Parquette JR
    Nanoscale; 2022 Mar; 14(12):4531-4537. PubMed ID: 35258058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic assembly of a multicomponent peptide/amphiphile nanotube.
    Linville JJ; Mason ML; Lopez-Torres EU; Parquette JR
    Nanoscale; 2024 Feb; 16(6):2894-2903. PubMed ID: 37990928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Threading carbon nanotubes through a self-assembled nanotube.
    Ji M; Mason ML; Modarelli DA; Parquette JR
    Chem Sci; 2019 Sep; 10(34):7868-7877. PubMed ID: 31853346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategy for the Co-Assembly of Co-Axial Nanotube-Polymer Hybrids.
    Ji M; Dawadi MB; LaSalla AR; Sun Y; Modarelli DA; Parquette JR
    Langmuir; 2017 Sep; 33(36):9129-9136. PubMed ID: 28805395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular self-assembly into one-dimensional nanostructures.
    Palmer LC; Stupp SI
    Acc Chem Res; 2008 Dec; 41(12):1674-84. PubMed ID: 18754628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-Pot Construction of Multicomponent Supramolecular Materials Comprising Self-Sorted Supramolecular Architectures of DNA and Semi-Artificial Glycopeptides.
    Higashi SL; Hirosawa KM; Suzuki KGN; Matsuura K; Ikeda M
    ACS Appl Bio Mater; 2020 Dec; 3(12):9082-9092. PubMed ID: 35019585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Supramolecular Nanofibers Formed from Multicomponent Nucleotide-Appended Bolaamphiphiles and Heteropolymeric DNA as a Template.
    Iwaura R; Kanai Y; Ohnishi-Kameyama M
    Chempluschem; 2016 Nov; 81(11):1230-1236. PubMed ID: 31964101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-sorting in supramolecular assemblies.
    Chen CH; Palmer LC; Stupp SI
    Soft Matter; 2021 Apr; 17(14):3902-3912. PubMed ID: 33705512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembly of Hierarchical Chiral Nanostructures Based on Metal-Benzimidazole Interactions: Chiral Nanofibers, Nanotubes, and Microtubular Flowers.
    Zhou X; Jin Q; Zhang L; Shen Z; Jiang L; Liu M
    Small; 2016 Sep; 12(34):4743-52. PubMed ID: 27248367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable and Reversible Assembly of Nanofiber from Natural Macromolecules via Protonation and Deprotonation.
    Zheng H; Tong X; Zhang Y; Yin P; Yi J; Chen Z; Lai H; Zhou W; Zhong L; Zhuo H; Peng X
    Small; 2024 Jan; 20(1):e2304196. PubMed ID: 37665232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains.
    An B; Wang X; Cui M; Gui X; Mao X; Liu Y; Li K; Chu C; Pu J; Ren S; Wang Y; Zhong G; Lu TK; Liu C; Zhong C
    ACS Nano; 2017 Jul; 11(7):6985-6995. PubMed ID: 28609612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical supramolecular spinning of nanofibers in a microfluidic channel: tuning nanostructures at a dynamic interface.
    Numata M; Takigami Y; Takayama M; Kozawa T; Hirose N
    Chemistry; 2012 Oct; 18(41):13008-17. PubMed ID: 22945551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Sorted, Random, and Block Supramolecular Copolymers via Sequence Controlled, Multicomponent Self-Assembly.
    Sarkar A; Sasmal R; Empereur-Mot C; Bochicchio D; Kompella SVK; Sharma K; Dhiman S; Sundaram B; Agasti SS; Pavan GM; George SJ
    J Am Chem Soc; 2020 Apr; 142(16):7606-7617. PubMed ID: 32233467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creation of hierarchical carbon nanotube assemblies through alternative packing of complementary semi-artificial beta-1,3-glucan/carbon nanotube composites.
    Numata M; Sugikawa K; Kaneko K; Shinkai S
    Chemistry; 2008; 14(8):2398-404. PubMed ID: 18200640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly of natural and synthetic drug amphiphiles into discrete supramolecular nanostructures.
    Lock LL; LaComb M; Schwarz K; Cheetham AG; Lin YA; Zhang P; Cui H
    Faraday Discuss; 2013; 166():285-301. PubMed ID: 24611283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advancing Wireframe DNA Nanostructures Using Single-Molecule Fluorescence Microscopy Techniques.
    Platnich CM; Hariri AA; Sleiman HF; Cosa G
    Acc Chem Res; 2019 Nov; 52(11):3199-3210. PubMed ID: 31675207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of Stimuli-Responsive Functional Materials via Hierarchical Self-Assembly Involving Coordination Interactions.
    Chen LJ; Yang HB
    Acc Chem Res; 2018 Nov; 51(11):2699-2710. PubMed ID: 30285407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA-Directed Self-Assembly of Highly Ordered and Dense Single-Walled Carbon Nanotube Arrays.
    Maune H; Han SP
    Methods Mol Biol; 2017; 1500():245-256. PubMed ID: 27813013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the Physical Dimensions of Peptide Nanotubes by Supramolecular Polymer Coassembly.
    Adler-Abramovich L; Marco P; Arnon ZA; Creasey RC; Michaels TC; Levin A; Scurr DJ; Roberts CJ; Knowles TP; Tendler SJ; Gazit E
    ACS Nano; 2016 Aug; 10(8):7436-42. PubMed ID: 27351519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.