These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 35258299)

  • 1. One-Step Supramolecular Multifunctional Coating on Plant Virus Nanoparticles for Bioimaging and Therapeutic Applications.
    Wu Z; Zhou J; Nkanga CI; Jin Z; He T; Borum RM; Yim W; Zhou J; Cheng Y; Xu M; Steinmetz NF; Jokerst JV
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13692-13702. PubMed ID: 35258299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viral nanoparticles for in vivo tumor imaging.
    Wen AM; Lee KL; Yildiz I; Bruckman MA; Shukla S; Steinmetz NF
    J Vis Exp; 2012 Nov; (69):e4352. PubMed ID: 23183850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The
    Nkanga CI; Chung YH; Shukla S; Zhou J; Jokerst JV; Steinmetz NF
    Biomater Sci; 2021 Oct; 9(21):7134-7150. PubMed ID: 34591046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Plant Viruses in Biotechnology, Medicine, and Human Health.
    Venkataraman S; Hefferon K
    Viruses; 2021 Aug; 13(9):. PubMed ID: 34578279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions Between Plant Viral Nanoparticles (VNPs) and Blood Plasma Proteins, and Their Impact on the VNP In Vivo Fates.
    Pitek AS; Veliz FA; Jameson SA; Steinmetz NF
    Methods Mol Biol; 2018; 1776():591-608. PubMed ID: 29869268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancer Theranostic Applications of Albumin-Coated Tobacco Mosaic Virus Nanoparticles.
    Pitek AS; Hu H; Shukla S; Steinmetz NF
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39468-39477. PubMed ID: 30403330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polydopamine-decorated tobacco mosaic virus for photoacoustic/magnetic resonance bimodal imaging and photothermal cancer therapy.
    Hu H; Yang Q; Baroni S; Yang H; Aime S; Steinmetz NF
    Nanoscale; 2019 May; 11(19):9760-9768. PubMed ID: 31066418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Let There Be Light: Targeted Photodynamic Therapy Using High Aspect Ratio Plant Viral Nanoparticles.
    Chariou PL; Wang L; Desai C; Park J; Robbins LK; von Recum HA; Ghiladi RA; Steinmetz NF
    Macromol Biosci; 2019 May; 19(5):e1800407. PubMed ID: 30721575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug-Loaded Plant-Virus Based Nanoparticles for Cancer Drug Delivery.
    Bruckman MA; Czapar AE; Steinmetz NF
    Methods Mol Biol; 2018; 1776():425-436. PubMed ID: 29869258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serum albumin 'camouflage' of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics.
    Pitek AS; Jameson SA; Veliz FA; Shukla S; Steinmetz NF
    Biomaterials; 2016 May; 89():89-97. PubMed ID: 26950168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinspired Silica Mineralization on Viral Templates.
    Dickmeis C; Altintoprak K; van Rijn P; Wege C; Commandeur U
    Methods Mol Biol; 2018; 1776():337-362. PubMed ID: 29869253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional plant virus nanoparticles: An emerging strategy for therapy of cancer.
    Azizi M; Shahgolzari M; Fathi-Karkan S; Ghasemi M; Samadian H
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(6):e1872. PubMed ID: 36450366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of tobacco mosaic virus and cowpea mosaic virus for the production of novel metal nanomaterials.
    Love AJ; Makarov V; Yaminsky I; Kalinina NO; Taliansky ME
    Virology; 2014 Jan; 449():133-9. PubMed ID: 24418546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elongated Plant Virus-Based Nanoparticles for Enhanced Delivery of Thrombolytic Therapies.
    Pitek AS; Wang Y; Gulati S; Gao H; Stewart PL; Simon DI; Steinmetz NF
    Mol Pharm; 2017 Nov; 14(11):3815-3823. PubMed ID: 28881141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of Potyvirus-Derived Nanoparticles Decorated with a Nanobody in Biofactory Plants.
    Martí M; Merwaiss F; Butković A; Daròs JA
    Front Bioeng Biotechnol; 2022; 10():877363. PubMed ID: 35433643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Protein Corona of Plant Virus Nanoparticles Influences their Dispersion Properties, Cellular Interactions, and In Vivo Fates.
    Pitek AS; Wen AM; Shukla S; Steinmetz NF
    Small; 2016 Apr; 12(13):1758-69. PubMed ID: 26853911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant molecular farming of virus-like nanoparticles as vaccines and reagents.
    Rybicki EP
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Mar; 12(2):e1587. PubMed ID: 31486296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface of physics and biology: engineering virus-based nanoparticles for biophotonics.
    Wen AM; Infusino M; De Luca A; Kernan DL; Czapar AE; Strangi G; Steinmetz NF
    Bioconjug Chem; 2015 Jan; 26(1):51-62. PubMed ID: 25541212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-Specific Antibody Conjugation Strategy to Functionalize Virus-Based Nanoparticles.
    Park J; Chariou PL; Steinmetz NF
    Bioconjug Chem; 2020 May; 31(5):1408-1416. PubMed ID: 32281790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal Ion/Tannic Acid Assembly as a Versatile Photothermal Platform in Engineering Multimodal Nanotheranostics for Advanced Applications.
    Liu T; Zhang M; Liu W; Zeng X; Song X; Yang X; Zhang X; Feng J
    ACS Nano; 2018 Apr; 12(4):3917-3927. PubMed ID: 29578680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.