These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 35258600)

  • 21. The barren stalk2 Gene Is Required for Axillary Meristem Development in Maize.
    Yao H; Skirpan A; Wardell B; Matthes MS; Best NB; McCubbin T; Durbak A; Smith T; Malcomber S; McSteen P
    Mol Plant; 2019 Mar; 12(3):374-389. PubMed ID: 30690173
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1.
    Chuck G; Meeley R; Hake S
    Development; 2008 Sep; 135(18):3013-9. PubMed ID: 18701544
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aberrant spikelet and panicle1, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice.
    Yoshida A; Ohmori Y; Kitano H; Taguchi-Shiobara F; Hirano HY
    Plant J; 2012 Apr; 70(2):327-39. PubMed ID: 22136599
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genes and QTLs controlling inflorescence and stem branch architecture in Leymus (Poaceae: Triticeae) Wildrye.
    Larson SR; Kellogg EA; Jensen KB
    J Hered; 2013; 104(5):678-91. PubMed ID: 23766524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulatory modules controlling maize inflorescence architecture.
    Eveland AL; Goldshmidt A; Pautler M; Morohashi K; Liseron-Monfils C; Lewis MW; Kumari S; Hiraga S; Yang F; Unger-Wallace E; Olson A; Hake S; Vollbrecht E; Grotewold E; Ware D; Jackson D
    Genome Res; 2014 Mar; 24(3):431-43. PubMed ID: 24307553
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of meristem maintenance and organ identity during rice reproductive development.
    Chongloi GL; Prakash S; Vijayraghavan U
    J Exp Bot; 2019 Mar; 70(6):1719-1736. PubMed ID: 30753578
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of grass inflorescence form by the fine-tuning of meristem phase change.
    Kyozuka J; Tokunaga H; Yoshida A
    Curr Opin Plant Biol; 2014 Feb; 17():110-5. PubMed ID: 24507502
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Revisiting the origin and identity specification of the spikelet: A structural innovation in grasses (Poaceae).
    Wang Y; Bi X; Zhong J
    Plant Physiol; 2022 Aug; 190(1):60-71. PubMed ID: 35640983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hormonal control of grass inflorescence development.
    Barazesh S; McSteen P
    Trends Plant Sci; 2008 Dec; 13(12):656-62. PubMed ID: 18986827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Early inflorescence development in the grasses (Poaceae).
    Kellogg EA; Camara PE; Rudall PJ; Ladd P; Malcomber ST; Whipple CJ; Doust AN
    Front Plant Sci; 2013; 4():250. PubMed ID: 23898335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A trehalose metabolic enzyme controls inflorescence architecture in maize.
    Satoh-Nagasawa N; Nagasawa N; Malcomber S; Sakai H; Jackson D
    Nature; 2006 May; 441(7090):227-30. PubMed ID: 16688177
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pleiotropic and nonredundant effects of an auxin importer in Setaria and maize.
    Zhu C; Box MS; Thiruppathi D; Hu H; Yu Y; Martin C; Doust AN; McSteen P; Kellogg EA
    Plant Physiol; 2022 Jun; 189(2):715-734. PubMed ID: 35285930
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Grass inflorescence architecture and meristem determinacy.
    Bommert P; Whipple C
    Semin Cell Dev Biol; 2018 Jul; 79():37-47. PubMed ID: 29020602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1.
    Chuck G; Meeley RB; Hake S
    Genes Dev; 1998 Apr; 12(8):1145-54. PubMed ID: 9553044
    [TBL] [Abstract][Full Text] [Related]  

  • 35. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets.
    Komatsu M; Chujo A; Nagato Y; Shimamoto K; Kyozuka J
    Development; 2003 Aug; 130(16):3841-50. PubMed ID: 12835399
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of auxin transport during inflorescence development in maize (Zea mays, Poaceae).
    Wu X; McSteen P
    Am J Bot; 2007 Nov; 94(11):1745-55. PubMed ID: 21636370
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Zhong J; van Esse GW; Bi X; Lan T; Walla A; Sang Q; Franzen R; von Korff M
    Proc Natl Acad Sci U S A; 2021 Feb; 118(8):. PubMed ID: 33593903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Auxin signaling modules regulate maize inflorescence architecture.
    Galli M; Liu Q; Moss BL; Malcomber S; Li W; Gaines C; Federici S; Roshkovan J; Meeley R; Nemhauser JL; Gallavotti A
    Proc Natl Acad Sci U S A; 2015 Oct; 112(43):13372-7. PubMed ID: 26464512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. UNBRANCHED3 regulates branching by modulating cytokinin biosynthesis and signaling in maize and rice.
    Du Y; Liu L; Li M; Fang S; Shen X; Chu J; Zhang Z
    New Phytol; 2017 Apr; 214(2):721-733. PubMed ID: 28040882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. OsbHLH067, OsbHLH068, and OsbHLH069 redundantly regulate inflorescence axillary meristem formation in rice.
    Xu T; Fu D; Xiong X; Zhu J; Feng Z; Liu X; Wu C
    PLoS Genet; 2023 Apr; 19(4):e1010698. PubMed ID: 37053298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.