These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35258821)

  • 1. Physcomitrium patens Protoplasting and Protoplast Transfection.
    Charlot F; Goudounet G; Nogué F; Perroud PF
    Methods Mol Biol; 2022; 2464():3-19. PubMed ID: 35258821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plastid Transformation in Physcomitrium (Physcomitrella) patens: An Update.
    Sugita M
    Methods Mol Biol; 2021; 2317():321-331. PubMed ID: 34028779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The phosphoproteome in regenerating protoplasts from Physcomitrella patens protonemata shows changes paralleling postembryonic development in higher plants.
    Wang X; Qi M; Li J; Ji Z; Hu Y; Bao F; Mahalingam R; He Y
    J Exp Bot; 2014 May; 65(8):2093-106. PubMed ID: 24700621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cas9 Genome Editing in the Moss Physcomitrium (Formerly Physcomitrella) patens.
    Wu SZ; Ryken SE; Bezanilla M
    Curr Protoc; 2023 Apr; 3(4):e725. PubMed ID: 37021953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of nutrients, cell density and culture techniques on protoplast regeneration and early protonema development in a moss, Physcomitrella patens.
    Schween G; Hohe A; Koprivova A; Reski R
    J Plant Physiol; 2003 Feb; 160(2):209-12. PubMed ID: 12685038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plastid transformation in Physcomitrella patens.
    Sugita M
    Methods Mol Biol; 2014; 1132():427-37. PubMed ID: 24599872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Moss
    Rensing SA; Goffinet B; Meyberg R; Wu SZ; Bezanilla M
    Plant Cell; 2020 May; 32(5):1361-1376. PubMed ID: 32152187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient polyethylene glycol (PEG) mediated transformation of the moss Physcomitrella patens.
    Liu YC; Vidali L
    J Vis Exp; 2011 Apr; (50):. PubMed ID: 21540817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted Gene Knockouts by Protoplast Transformation in the Moss
    Zhu L
    Front Genome Ed; 2021; 3():719087. PubMed ID: 34977859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplex CRISPR-Cas9 mutagenesis of the phytochrome gene family in Physcomitrium (Physcomitrella) patens.
    Trogu S; Ermert AL; Stahl F; Nogué F; Gans T; Hughes J
    Plant Mol Biol; 2021 Nov; 107(4-5):327-336. PubMed ID: 33346897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for Medium-Scale Study of Biological Effects of Strigolactone-Like Molecules on the Moss Physcomitrium (Physcomitrella) patens.
    Guillory A; Bonhomme S
    Methods Mol Biol; 2021; 2309():143-155. PubMed ID: 34028685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome of protoplasts reprogrammed into stem cells in Physcomitrella patens.
    Xiao L; Zhang L; Yang G; Zhu H; He Y
    PLoS One; 2012; 7(4):e35961. PubMed ID: 22545152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospho-proteomic analysis of developmental reprogramming in the moss Physcomitrella patens.
    Wang X; Zhou S; Chen L; Quatrano RS; He Y
    J Proteomics; 2014 Aug; 108():284-94. PubMed ID: 24933006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Somatic hybridization in the moss Physcomitrella patens using PEG-induced protoplast fusion.
    Cove DJ; Perroud PF; Charron AJ; McDaniel SF; Khandelwal A; Quatrano RS
    Cold Spring Harb Protoc; 2009 Feb; 2009(2):pdb.prot5141. PubMed ID: 20147071
    [No Abstract]   [Full Text] [Related]  

  • 15. An improved and highly standardised transformation procedure allows efficient production of single and multiple targeted gene-knockouts in a moss, Physcomitrella patens.
    Hohe A; Egener T; Lucht JM; Holtorf H; Reinhard C; Schween G; Reski R
    Curr Genet; 2004 Jan; 44(6):339-47. PubMed ID: 14586556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generating Targeted Gene Knockout Lines in Physcomitrella patens to Study Evolution of Stress-Responsive Mechanisms.
    Maronova M; Kalyna M
    Methods Mol Biol; 2016; 1398():221-34. PubMed ID: 26867627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas9-mediated efficient directed mutagenesis and RAD51-dependent and RAD51-independent gene targeting in the moss Physcomitrella patens.
    Collonnier C; Epert A; Mara K; Maclot F; Guyon-Debast A; Charlot F; White C; Schaefer DG; Nogué F
    Plant Biotechnol J; 2017 Jan; 15(1):122-131. PubMed ID: 27368642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular evidence for convergent evolution and allopolyploid speciation within the Physcomitrium-Physcomitrella species complex.
    Beike AK; von Stackelberg M; Schallenberg-Rüdinger M; Hanke ST; Follo M; Quandt D; McDaniel SF; Reski R; Tan BC; Rensing SA
    BMC Evol Biol; 2014 Jul; 14():158. PubMed ID: 25015729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Exploration and identification of Physcomitrella patens moss peptides].
    Skripnikov AIu; Anikanov NA; Kazakov VS; Dolgov SV; Ziganshin RKh; Govorun VM; Ivanov VT
    Bioorg Khim; 2011; 37(1):108-18. PubMed ID: 21460886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Proteomics Analysis of Developmental Reprogramming in Protoplasts of the Moss Physcomitrella patens.
    Wang X; Chen L; Yang A; Bu C; He Y
    Plant Cell Physiol; 2017 May; 58(5):946-961. PubMed ID: 28398533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.