These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 35258832)
21. Genomic analysis of field pennycress (Thlaspi arvense) provides insights into mechanisms of adaptation to high elevation. Geng Y; Guan Y; Qiong L; Lu S; An M; Crabbe MJC; Qi J; Zhao F; Qiao Q; Zhang T BMC Biol; 2021 Jul; 19(1):143. PubMed ID: 34294107 [TBL] [Abstract][Full Text] [Related]
22. Functional analysis of β-ketoacyl-CoA synthase from biofuel feedstock Thlaspi arvense reveals differences in the triacylglycerol biosynthetic pathway among Brassicaceae. Claver A; de la Vega M; Rey-Giménez R; Luján MÁ; Picorel R; López MV; Alfonso M Plant Mol Biol; 2020 Oct; 104(3):283-296. PubMed ID: 32740897 [TBL] [Abstract][Full Text] [Related]
23. Direct leaf-peeling method for areca protoplasts: a simple and efficient system for protoplast isolation and transformation in areca palm (Areca catechu). Wang Y; Wang L; Liu H; Gou B; Hu W; Qin L; Shen W; Wang A; Cui H; Dai Z BMC Plant Biol; 2023 Jan; 23(1):56. PubMed ID: 36698067 [TBL] [Abstract][Full Text] [Related]
24. Highly Efficient Leaf Base Protoplast Isolation and Transient Expression Systems for Orchids and Other Important Monocot Crops. Ren R; Gao J; Yin D; Li K; Lu C; Ahmad S; Wei Y; Jin J; Zhu G; Yang F Front Plant Sci; 2021; 12():626015. PubMed ID: 33659015 [TBL] [Abstract][Full Text] [Related]
25. Research progress on the development of pennycress ( Ma J; Wang H; Zhang Y Front Plant Sci; 2023; 14():1268085. PubMed ID: 38093994 [TBL] [Abstract][Full Text] [Related]
26. The CLAVATA3/ESR-related peptide family in the biofuel crop pennycress. Hagelthorn L; Fletcher JC Front Plant Sci; 2023; 14():1240342. PubMed ID: 37600169 [TBL] [Abstract][Full Text] [Related]
27. Chromosome-level Thlaspi arvense genome provides new tools for translational research and for a newly domesticated cash cover crop of the cooler climates. Nunn A; Rodríguez-Arévalo I; Tandukar Z; Frels K; Contreras-Garrido A; Carbonell-Bejerano P; Zhang P; Ramos Cruz D; Jandrasits K; Lanz C; Brusa A; Mirouze M; Dorn K; Galbraith DW; Jarvis BA; Sedbrook JC; Wyse DL; Otto C; Langenberger D; Stadler PF; Weigel D; Marks MD; Anderson JA; Becker C; Chopra R Plant Biotechnol J; 2022 May; 20(5):944-963. PubMed ID: 34990041 [TBL] [Abstract][Full Text] [Related]
28. Soybean Cyst Nematode Population Development and its Effect on Pennycress in a Greenhouse Study. Hoerning C; Chen S; Frels K; Wyse D; Wells S; Anderson J J Nematol; 2022 Feb; 54(1):20220006. PubMed ID: 35860521 [TBL] [Abstract][Full Text] [Related]
29. Application of Protoplast Regeneration to CRISPR/Cas9 Mutagenesis in Nicotiana tabacum. Wu FH; Yuan YH; Hsu CT; Cheng QW; Lin CS Methods Mol Biol; 2022; 2464():49-64. PubMed ID: 35258824 [TBL] [Abstract][Full Text] [Related]
30. Camelina sativa, an oilseed at the nexus between model system and commercial crop. Malik MR; Tang J; Sharma N; Burkitt C; Ji Y; Mykytyshyn M; Bohmert-Tatarev K; Peoples O; Snell KD Plant Cell Rep; 2018 Oct; 37(10):1367-1381. PubMed ID: 29881973 [TBL] [Abstract][Full Text] [Related]
31. Non-conventional pathways enable pennycress (Thlaspi arvense L.) embryos to achieve high efficiency of oil biosynthesis. Tsogtbaatar E; Cocuron JC; Alonso AP J Exp Bot; 2020 May; 71(10):3037-3051. PubMed ID: 32006014 [TBL] [Abstract][Full Text] [Related]
32. Camelina as a sustainable oilseed crop: contributions of plant breeding and genetic engineering. Vollmann J; Eynck C Biotechnol J; 2015 Apr; 10(4):525-35. PubMed ID: 25706640 [TBL] [Abstract][Full Text] [Related]
33. Development of a rapid, low-cost protoplast transfection system for switchgrass (Panicum virgatum L.). Burris KP; Dlugosz EM; Collins AG; Stewart CN; Lenaghan SC Plant Cell Rep; 2016 Mar; 35(3):693-704. PubMed ID: 26685665 [TBL] [Abstract][Full Text] [Related]
34. Spatial genetic and epigenetic structure of Thlaspi arvense (field pennycress) in China. Guan Y; Qu P; Lu S; Crabbe MJC; Zhang T; Geng Y Genes Genet Syst; 2021 Feb; 95(5):225-234. PubMed ID: 33177249 [TBL] [Abstract][Full Text] [Related]
35. Efficacy of Organic Soil Amendments for Management of Heterodera glycines in Greenhouse Experiments. Grabau ZJ; Chen S J Nematol; 2014 Sep; 46(3):267-74. PubMed ID: 25276000 [TBL] [Abstract][Full Text] [Related]
36. Surface runoff and nutrient dynamics in cover crop-soybean systems in the Upper Midwest. Weyers SL; Gesch RW; Forcella F; Eberle CA; Thom MD; Matthees HL; Ott M; Feyereisen GW; Strock JS J Environ Qual; 2021 Jan; 50(1):158-171. PubMed ID: 33345349 [TBL] [Abstract][Full Text] [Related]
37. Efficient isolation of protoplasts from rice calli with pause points and its application in transient gene expression and genome editing assays. Poddar S; Tanaka J; Cate JHD; Staskawicz B; Cho MJ Plant Methods; 2020 Nov; 16(1):151. PubMed ID: 33292393 [TBL] [Abstract][Full Text] [Related]
38. A stable DNA-free screening system for CRISPR/RNPs-mediated gene editing in hot and sweet cultivars of Capsicum annuum. Kim H; Choi J; Won KH BMC Plant Biol; 2020 Oct; 20(1):449. PubMed ID: 33004008 [TBL] [Abstract][Full Text] [Related]
39. Metabolic Engineering a Model Oilseed Yuan L; Li R Front Plant Sci; 2020; 11():11. PubMed ID: 32117362 [No Abstract] [Full Text] [Related]
40. Advances in protoplast transfection promote efficient CRISPR/Cas9-mediated genome editing in tetraploid potato. Rather GA; Ayzenshtat D; Teper-Bamnolker P; Kumar M; Forotan Z; Eshel D; Bocobza S Planta; 2022 Jun; 256(1):14. PubMed ID: 35713718 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]