These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 35258937)

  • 1. Unraveling the Mechanics of a Repeat-Protein Nanospring: From Folding of Individual Repeats to Fluctuations of the Superhelix.
    Synakewicz M; Eapen RS; Perez-Riba A; Rowling PJE; Bauer D; Weißl A; Fischer G; Hyvönen M; Rief M; Itzhaki LS; Stigler J
    ACS Nano; 2022 Mar; 16(3):3895-3905. PubMed ID: 35258937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ising Model Reprogramming of a Repeat Protein's Equilibrium Unfolding Pathway.
    Millership C; Phillips JJ; Main ER
    J Mol Biol; 2016 May; 428(9 Pt A):1804-17. PubMed ID: 26947150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broken TALEs: Transcription Activator-like Effectors Populate Partly Folded States.
    Geiger-Schuller K; Barrick D
    Biophys J; 2016 Dec; 111(11):2395-2403. PubMed ID: 27926841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calorimetric study of a series of designed repeat proteins: modular structure and modular folding.
    Cortajarena AL; Regan L
    Protein Sci; 2011 Feb; 20(2):336-40. PubMed ID: 21280125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the folding energy landscape of a series of designed consensus tetratricopeptide repeat proteins.
    Javadi Y; Main ER
    Proc Natl Acad Sci U S A; 2009 Oct; 106(41):17383-8. PubMed ID: 19805120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating repeat protein stability: the effect of individual helix stability on the collective behavior of the ensemble.
    Cortajarena AL; Mochrie SG; Regan L
    Protein Sci; 2011 Jun; 20(6):1042-7. PubMed ID: 21495096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanospring behaviour of ankyrin repeats.
    Lee G; Abdi K; Jiang Y; Michaely P; Bennett V; Marszalek PE
    Nature; 2006 Mar; 440(7081):246-9. PubMed ID: 16415852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the energy landscape of repeat proteins using NMR-detected hydrogen exchange.
    Cortajarena AL; Mochrie SG; Regan L
    J Mol Biol; 2008 Jun; 379(3):617-26. PubMed ID: 18462750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local and long-range stability in tandemly arrayed tetratricopeptide repeats.
    Main ER; Stott K; Jackson SE; Regan L
    Proc Natl Acad Sci U S A; 2005 Apr; 102(16):5721-6. PubMed ID: 15824314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Context-Dependent Energetics of Loop Extensions in a Family of Tandem-Repeat Proteins.
    Perez-Riba A; Lowe AR; Main ERG; Itzhaki LS
    Biophys J; 2018 Jun; 114(11):2552-2562. PubMed ID: 29874606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of the multistate folding of designed TPR proteins through intrinsic and extrinsic factors.
    Phillips JJ; Javadi Y; Millership C; Main ER
    Protein Sci; 2012 Mar; 21(3):327-38. PubMed ID: 22170589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new folding paradigm for repeat proteins.
    Kajander T; Cortajarena AL; Main ER; Mochrie SG; Regan L
    J Am Chem Soc; 2005 Jul; 127(29):10188-90. PubMed ID: 16028928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A theoretical model for the mechanical unfolding of repeat proteins.
    Makarov DE
    Biophys J; 2009 Mar; 96(6):2160-7. PubMed ID: 19289042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contribution of entropy, enthalpy, and hydrophobic desolvation to cooperativity in repeat-protein folding.
    Aksel T; Majumdar A; Barrick D
    Structure; 2011 Mar; 19(3):349-60. PubMed ID: 21397186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and stability of designed TPR protein superhelices: unusual crystal packing and implications for natural TPR proteins.
    Kajander T; Cortajarena AL; Mochrie S; Regan L
    Acta Crystallogr D Biol Crystallogr; 2007 Jul; 63(Pt 7):800-11. PubMed ID: 17582171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capping motifs stabilize the leucine-rich repeat protein PP32 and rigidify adjacent repeats.
    Dao TP; Majumdar A; Barrick D
    Protein Sci; 2014 Jun; 23(6):801-11. PubMed ID: 24659532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermediates in the folding equilibrium of repeat proteins from the TPR family.
    González-Charro V; Rey A
    Eur Biophys J; 2014 Sep; 43(8-9):433-43. PubMed ID: 25048829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folding and unfolding mechanism of highly stable full-consensus ankyrin repeat proteins.
    Wetzel SK; Settanni G; Kenig M; Binz HK; Plückthun A
    J Mol Biol; 2008 Feb; 376(1):241-57. PubMed ID: 18164721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extreme stability in de novo-designed repeat arrays is determined by unusually stable short-range interactions.
    Geiger-Schuller K; Sforza K; Yuhas M; Parmeggiani F; Baker D; Barrick D
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):7539-7544. PubMed ID: 29959204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical unfolding of an ankyrin repeat protein.
    Serquera D; Lee W; Settanni G; Marszalek PE; Paci E; Itzhaki LS
    Biophys J; 2010 Apr; 98(7):1294-301. PubMed ID: 20371329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.