These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 35258953)

  • 1. AI-Driven Synthetic Route Design Incorporated with Retrosynthesis Knowledge.
    Ishida S; Terayama K; Kojima R; Takasu K; Okuno Y
    J Chem Inf Model; 2022 Mar; 62(6):1357-1367. PubMed ID: 35258953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Retrosynthetic Reactions Using Self-Corrected Transformer Neural Networks.
    Zheng S; Rao J; Zhang Z; Xu J; Yang Y
    J Chem Inf Model; 2020 Jan; 60(1):47-55. PubMed ID: 31825611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical assessment of synthetic accessibility scores in computer-assisted synthesis planning.
    Skoraczyński G; Kitlas M; Miasojedow B; Gambin A
    J Cheminform; 2023 Jan; 15(1):6. PubMed ID: 36641473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retrosynthesis Zero: Self-Improving Global Synthesis Planning Using Reinforcement Learning.
    Guo J; Yu C; Li K; Zhang Y; Wang G; Li S; Dong H
    J Chem Theory Comput; 2024 Jun; 20(11):4921-4938. PubMed ID: 38747149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning in Computer-Aided Synthesis Planning.
    Coley CW; Green WH; Jensen KF
    Acc Chem Res; 2018 May; 51(5):1281-1289. PubMed ID: 29715002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Planning chemical syntheses with deep neural networks and symbolic AI.
    Segler MHS; Preuss M; Waller MP
    Nature; 2018 Mar; 555(7698):604-610. PubMed ID: 29595767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-driven Chemical Reaction Prediction and Retrosynthesis.
    Nair VH; Schwaller P; Laino T
    Chimia (Aarau); 2019 Dec; 73(12):997-1000. PubMed ID: 31883550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian Algorithm for Retrosynthesis.
    Guo Z; Wu S; Ohno M; Yoshida R
    J Chem Inf Model; 2020 Oct; 60(10):4474-4486. PubMed ID: 32975943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemistry-informed molecular graph as reaction descriptor for machine-learned retrosynthesis planning.
    Zhang B; Zhang X; Du W; Song Z; Zhang G; Zhang G; Wang Y; Chen X; Jiang J; Luo Y
    Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2212711119. PubMed ID: 36191228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retrosynthetic accessibility score (RAscore) - rapid machine learned synthesizability classification from AI driven retrosynthetic planning.
    Thakkar A; Chadimová V; Bjerrum EJ; Engkvist O; Reymond JL
    Chem Sci; 2021 Jan; 12(9):3339-3349. PubMed ID: 34164104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Retrosynthetic Reaction Prediction using Local Reactivity and Global Attention.
    Chen S; Jung Y
    JACS Au; 2021 Oct; 1(10):1612-1620. PubMed ID: 34723264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction Templates: Bridging Synthesis Knowledge and Artificial Intelligence.
    Chen S; Noh J; Jang J; Kim S; Gu GH; Jung Y
    Acc Chem Res; 2024 Jul; 57(14):1964-1972. PubMed ID: 38924502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multistep retrosynthesis combining a disconnection aware triple transformer loop with a route penalty score guided tree search.
    Kreutter D; Reymond JL
    Chem Sci; 2023 Sep; 14(36):9959-9969. PubMed ID: 37736648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Chemical Synthesis Analysis and Pathway Design.
    Feng F; Lai L; Pei J
    Front Chem; 2018; 6():199. PubMed ID: 29915783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenging Complexity with Simplicity: Rethinking the Role of Single-Step Models in Computer-Aided Synthesis Planning.
    Li J; Lin K; Pei J; Lai L
    J Chem Inf Model; 2024 Jul; 64(14):5470-5479. PubMed ID: 38940765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction and Interpretable Visualization of Retrosynthetic Reactions Using Graph Convolutional Networks.
    Ishida S; Terayama K; Kojima R; Takasu K; Okuno Y
    J Chem Inf Model; 2019 Dec; 59(12):5026-5033. PubMed ID: 31769668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergy Between Expert and Machine-Learning Approaches Allows for Improved Retrosynthetic Planning.
    Badowski T; Gajewska EP; Molga K; Grzybowski BA
    Angew Chem Int Ed Engl; 2020 Jan; 59(2):725-730. PubMed ID: 31750610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Merging enzymatic and synthetic chemistry with computational synthesis planning.
    Levin I; Liu M; Voigt CA; Coley CW
    Nat Commun; 2022 Dec; 13(1):7747. PubMed ID: 36517480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RASA: a rapid retrosynthesis-based scoring method for the assessment of synthetic accessibility of drug-like molecules.
    Huang Q; Li LL; Yang SY
    J Chem Inf Model; 2011 Oct; 51(10):2768-77. PubMed ID: 21932860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finding Relevant Retrosynthetic Disconnections for Stereocontrolled Reactions.
    Wiest O; Bauer C; Helquist P; Norrby PO; Genheden S
    J Chem Inf Model; 2024 Aug; 64(15):5796-5805. PubMed ID: 38995078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.