These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 35258957)
1. Removal of Waterborne Viruses by Olive M; Moerman F; Fernandez-Cassi X; Altermatt F; Kohn T Environ Sci Technol; 2022 Apr; 56(7):4062-4070. PubMed ID: 35258957 [TBL] [Abstract][Full Text] [Related]
2. Uptake without inactivation of human adenovirus type 2 by Olive M; Daraspe J; Genoud C; Kohn T Environ Sci Process Impacts; 2023 Jul; 25(7):1181-1192. PubMed ID: 37376996 [TBL] [Abstract][Full Text] [Related]
3. Control of Waterborne Human Viruses by Indigenous Bacteria and Protists Is Influenced by Temperature, Virus Type, and Microbial Species. Olive M; Gan C; Carratalà A; Kohn T Appl Environ Microbiol; 2020 Jan; 86(3):. PubMed ID: 31732569 [TBL] [Abstract][Full Text] [Related]
4. Viral Transfer and Inactivation through Zooplankton Trophic Interactions. Ismail NS; Olive M; Fernandez-Cassi X; Bachmann V; Kohn T Environ Sci Technol; 2020 Aug; 54(15):9418-9426. PubMed ID: 32662638 [TBL] [Abstract][Full Text] [Related]
5. Loss of the Acetate Switch in Vibrio vulnificus Enhances Predation Defense against Tetrahymena pyriformis. Rasheedkhan Regina V; Noorian P; Sim CBW; Constancias F; Kaliyamoorthy E; Booth SC; Espinoza-Vergara G; Rice SA; McDougald D Appl Environ Microbiol; 2022 Jan; 88(2):e0166521. PubMed ID: 34731052 [TBL] [Abstract][Full Text] [Related]
6. A model for endosymbiosis: interaction between Tetrahymena pyriformis and Escherichia coli. Siegmund L; Burmester A; Fischer MS; Wöstemeyer J Eur J Protistol; 2013 Nov; 49(4):552-63. PubMed ID: 23763905 [TBL] [Abstract][Full Text] [Related]
7. Significance of predation by protists in aquatic microbial food webs. Sherr EB; Sherr BF Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):293-308. PubMed ID: 12448728 [TBL] [Abstract][Full Text] [Related]
8. Purification and primary structure of metallothioneins induced by cadmium in the protists Tetrahymena pigmentosa and Tetrahymena pyriformis. Piccinni E; Staudenmann W; Albergoni V; De Gabrieli R; James P Eur J Biochem; 1994 Dec; 226(3):853-9. PubMed ID: 7813475 [TBL] [Abstract][Full Text] [Related]
9. Removal of MS2, Qβ and GA bacteriophages during drinking water treatment at pilot scale. Boudaud N; Machinal C; David F; Fréval-Le Bourdonnec A; Jossent J; Bakanga F; Arnal C; Jaffrezic MP; Oberti S; Gantzer C Water Res; 2012 May; 46(8):2651-64. PubMed ID: 22421032 [TBL] [Abstract][Full Text] [Related]
10. Protist diversity and community complexity in the rhizosphere of switchgrass are dynamic as plants develop. Ceja-Navarro JA; Wang Y; Ning D; Arellano A; Ramanculova L; Yuan MM; Byer A; Craven KD; Saha MC; Brodie EL; Pett-Ridge J; Firestone MK Microbiome; 2021 Apr; 9(1):96. PubMed ID: 33910643 [TBL] [Abstract][Full Text] [Related]
11. Associational Resistance to Predation by Protists in a Mixed Species Biofilm. Goh YF; Røder HL; Chan SH; Ismail MH; Madsen JS; Lee KWK; Sørensen SJ; Givskov M; Burmølle M; Rice SA; McDougald D Appl Environ Microbiol; 2023 Feb; 89(2):e0174122. PubMed ID: 36656007 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms of temperature-dependent swimming: the importance of physics, physiology and body size in determining protist swimming speed. Beveridge OS; Petchey OL; Humphries S J Exp Biol; 2010 Dec; 213(Pt 24):4223-31. PubMed ID: 21113003 [TBL] [Abstract][Full Text] [Related]
13. Assessment of the efficacy of membrane filtration processes to remove human enteric viruses and the suitability of bacteriophages and a plant virus as surrogates for those viruses. Shirasaki N; Matsushita T; Matsui Y; Murai K Water Res; 2017 May; 115():29-39. PubMed ID: 28259077 [TBL] [Abstract][Full Text] [Related]
14. Temperature-dependent changes in the swimming behaviour of Tetrahymena pyriformis-NT1 and their interrelationships with electrophysiology and the state of membrane lipids. Connolly JG; Brown ID; Lee AG; Kerkut GA Comp Biochem Physiol A Comp Physiol; 1985; 81(2):303-10. PubMed ID: 2864172 [TBL] [Abstract][Full Text] [Related]
15. Poliovirus and echovirus survival in Tetrahymena pyriformis culture in vivo. Danes L; Cerva L J Hyg Epidemiol Microbiol Immunol; 1984; 28(2):193-200. PubMed ID: 6088623 [TBL] [Abstract][Full Text] [Related]
16. Evidence for a correlation between swimming velocity and membrane fluidity of Tetrahymena cells. Goto M; Ohki K; Nozawa Y Biochim Biophys Acta; 1982 Dec; 693(2):335-40. PubMed ID: 6818990 [TBL] [Abstract][Full Text] [Related]
17. Bacterial Surface Traits Influence Digestion by Tetrahymena pyriformis and Alter Opportunity to Escape from Food Vacuoles. Siegmund L; Schweikert M; Fischer MS; Wöstemeyer J J Eukaryot Microbiol; 2018 Jul; 65(5):600-611. PubMed ID: 29377516 [TBL] [Abstract][Full Text] [Related]
18. Listeria monocytogenes virulence factor Listeriolysin O favors bacterial growth in co-culture with the ciliate Tetrahymena pyriformis, causes protozoan encystment and promotes bacterial survival inside cysts. Pushkareva VI; Ermolaeva SA BMC Microbiol; 2010 Jan; 10():26. PubMed ID: 20109168 [TBL] [Abstract][Full Text] [Related]
19. The filter-feeding ciliates Colpidium striatum and Tetrahymena pyriformis display selective feeding behaviours in the presence of mixed, equally-sized, bacterial prey. Thurman J; Parry JD; Hill PJ; Laybourn-Parry J Protist; 2010 Oct; 161(4):577-88. PubMed ID: 20471910 [TBL] [Abstract][Full Text] [Related]
20. Broad toxicological effects of per-/poly- fluoroalkyl substances (PFAS) on the unicellular eukaryote, Tetrahymena pyriformis. Lim J Environ Toxicol Pharmacol; 2022 Oct; 95():103954. PubMed ID: 35948183 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]