These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 35259108)

  • 1. Unraveling the Physiological Correlates of Mental Workload Variations in Tracking and Collision Prediction Tasks.
    John AR; Singh AK; Do TN; Eidels A; Nalivaiko E; Gavgani AM; Brown S; Bennett M; Lal S; Simpson AM; Gustin SM; Double K; Walker FR; Kleitman S; Morley J; Lin CT
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():770-781. PubMed ID: 35259108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining Cognitive Workload Using Physiological Measurements: Pupillometry and Heart-Rate Variability.
    Ma X; Monfared R; Grant R; Goh YM
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cognitive performance and electroencephalographic variations in air traffic controllers under various mental workload and time of day.
    Izadi Laybidi M; Rasoulzadeh Y; Dianat I; Samavati M; Asghari Jafarabadi M; Nazari MA
    Physiol Behav; 2022 Aug; 252():113842. PubMed ID: 35561808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A passive brain-computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks.
    Aricò P; Borghini G; Di Flumeri G; Colosimo A; Pozzi S; Babiloni F
    Prog Brain Res; 2016; 228():295-328. PubMed ID: 27590973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of cognitive conflict during unexpected robot behavior under different mental workload conditions in a physical human-robot collaboration.
    John AR; Singh AK; Gramann K; Liu D; Lin CT
    J Neural Eng; 2024 Mar; 21(2):. PubMed ID: 38295415
    [No Abstract]   [Full Text] [Related]  

  • 6. Measurement and identification of mental workload during simulated computer tasks with multimodal methods and machine learning.
    Ding Y; Cao Y; Duffy VG; Wang Y; Zhang X
    Ergonomics; 2020 Jul; 63(7):896-908. PubMed ID: 32330080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mental workload variations during different cognitive office tasks with social media interruptions.
    Zahmat Doost E; Zhang W
    Ergonomics; 2023 May; 66(5):592-608. PubMed ID: 35856248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical brain monitoring for operator training and mental workload assessment.
    Ayaz H; Shewokis PA; Bunce S; Izzetoglu K; Willems B; Onaral B
    Neuroimage; 2012 Jan; 59(1):36-47. PubMed ID: 21722738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG Based Dynamic Functional Connectivity Analysis in Mental Workload Tasks With Different Types of Information.
    Guan K; Zhang Z; Chai X; Tian Z; Liu T; Niu H
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():632-642. PubMed ID: 35239485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transitions Between Low and High Levels of Mental Workload can Improve Multitasking Performance.
    Devlin SP; Moacdieh NM; Wickens CD; Riggs SL
    IISE Trans Occup Ergon Hum Factors; 2020; 8(2):72-87. PubMed ID: 32673167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG-Based Mental Workload Estimation.
    Samima S; Sarma M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5605-5608. PubMed ID: 31947126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indices of mental workload in a complex task environment.
    Veltman JA; Gaillard AW
    Neuropsychobiology; 1993; 28(1-2):72-5. PubMed ID: 8255413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eye-Tracking in Physical Human-Robot Interaction: Mental Workload and Performance Prediction.
    Upasani S; Srinivasan D; Zhu Q; Du J; Leonessa A
    Hum Factors; 2024 Aug; 66(8):2104-2119. PubMed ID: 37793896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving pilot mental workload evaluation with combined measures.
    Wanyan X; Zhuang D; Zhang H
    Biomed Mater Eng; 2014; 24(6):2283-90. PubMed ID: 25226928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Task difficulty and physiological measures of mental workload in air traffic control: a scoping review.
    Pagnotta M; Jacobs DM; de Frutos PL; Rodríguez R; Ibáñez-Gijón J; Travieso D
    Ergonomics; 2022 Aug; 65(8):1095-1118. PubMed ID: 34904533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mental workload assessment by monitoring brain, heart, and eye with six biomedical modalities during six cognitive tasks.
    Mark JA; Curtin A; Kraft AE; Ziegler MD; Ayaz H
    Front Neuroergon; 2024; 5():1345507. PubMed ID: 38533517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Noise Exposure and Mental Workload on Physiological Responses during Task Execution.
    Fan Y; Liang J; Cao X; Pang L; Zhang J
    Int J Environ Res Public Health; 2022 Sep; 19(19):. PubMed ID: 36231736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliability over time of EEG-based mental workload evaluation during Air Traffic Management (ATM) tasks.
    Arico P; Borghini G; Di Flumeri G; Colosimo A; Graziani I; Imbert JP; Granger G; Benhacene R; Terenzi M; Pozzi S; Babiloni F
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():7242-5. PubMed ID: 26737963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Context-Dependent Cognitive Workload Monitoring using Pupillometry for Control Room Operators to Prevent Overload.
    Bhavsar P
    IISE Trans Occup Ergon Hum Factors; 2022; 10(2):91-103. PubMed ID: 35575073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring performance of professional and occupational operators.
    Borghini G; Ronca V; Vozzi A; Aricò P; Di Flumeri G; Babiloni F
    Handb Clin Neurol; 2020; 168():199-205. PubMed ID: 32164853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.