These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35259293)

  • 1. Promoting Electroosmotic Water Flow through a Carbon Nanotube by Weakening the Competition between Cations and Anions in a Lateral Electric Field.
    Zhang X; Liu Y; Su J
    Langmuir; 2022 Mar; 38(11):3530-3539. PubMed ID: 35259293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electropumping Phenomenon in Modified Carbon Nanotubes.
    Ding C; Zhao Y; Su J
    Langmuir; 2021 Oct; 37(42):12318-12326. PubMed ID: 34644087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of temperature on the coupling transport of water and ions through a carbon nanotube in an electric field.
    Salman S; Zhao Y; Zhang X; Su J
    J Chem Phys; 2020 Nov; 153(18):184503. PubMed ID: 33187400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Ion Rejection in Carbon Nanotubes by a Lateral Electric Field.
    Zhang X; Li S; Su J
    Langmuir; 2022 Aug; 38(32):10065-10074. PubMed ID: 35921520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Interface Ions in the Control of Water Transport through a Carbon Nanotube.
    Zhao Y; Chen J; Huang D; Su J
    Langmuir; 2019 Oct; 35(41):13442-13451. PubMed ID: 31539260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How ions block the single-file water transport through a carbon nanotube.
    Su Z; Chen J; Zhao Y; Su J
    Phys Chem Chem Phys; 2019 Jun; 21(21):11298-11305. PubMed ID: 31106311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced water transport through a carbon nanotube controlled by the lateral pressure.
    Lv F; Fang C; Su J
    Nanotechnology; 2019 Jun; 30(24):245707. PubMed ID: 30836337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Friction-Induced Electroosmotic Phenomena in Thin Neutral Nanotubes.
    Vuković L; Vokac E; Král P
    J Phys Chem Lett; 2014 Jun; 5(12):2131-7. PubMed ID: 26270504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AC Electroosmotic Pumping in Nanofluidic Funnels.
    Kneller AR; Haywood DG; Jacobson SC
    Anal Chem; 2016 Jun; 88(12):6390-4. PubMed ID: 27230495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rectification Correlation between Water and Ions through Asymmetric Graphene Channels.
    Li S; Zhao Y; Zhang X; Ding C; Su J
    J Phys Chem B; 2021 Oct; 125(40):11232-11241. PubMed ID: 34597047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternating electric field-induced ion current rectification and electroosmotic pump in ultranarrow charged carbon nanocones.
    Li W; Wang W; Hou Q; Yan Y; Dai C; Zhang J
    Phys Chem Chem Phys; 2018 Nov; 20(44):27910-27916. PubMed ID: 30379156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competition between Hydration Shell and Ordered Water Chain Induces Thickness-Dependent Desalination Performance in Carbon Nanotube Membrane.
    Liu S; Wang L; Xia J; Wang R; Tang C; Wang C
    Membranes (Basel); 2023 May; 13(5):. PubMed ID: 37233586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field.
    Su J; Guo H
    ACS Nano; 2011 Jan; 5(1):351-9. PubMed ID: 21162530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of terahertz electromagnetic field on single-file water transport through a carbon nanotube.
    Zhao Y; Yang K; Su J
    Phys Chem Chem Phys; 2023 Sep; 25(37):25659-25669. PubMed ID: 37721212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electropumping of nanofluidic water by linear and angular momentum coupling: theoretical foundations and molecular dynamics simulations.
    Daivis PJ; Hansen JS; Todd BD
    Phys Chem Chem Phys; 2021 Nov; 23(44):25003-25018. PubMed ID: 34739012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interface nanoparticle control of a nanometer water pump.
    Su J; Zhao Y; Fang C; Bilal Ahmed S; Shi Y
    Phys Chem Chem Phys; 2017 Aug; 19(33):22406-22416. PubMed ID: 28808710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures of water molecules in carbon nanotubes under electric fields.
    Winarto ; Takaiwa D; Yamamoto E; Yasuoka K
    J Chem Phys; 2015 Mar; 142(12):124701. PubMed ID: 25833597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning water transport through nanochannels by changing the direction of an external electric field.
    Zhu J; Lan Y; Du H; Zhang Y; Su J
    Phys Chem Chem Phys; 2016 Jul; 18(27):17991-6. PubMed ID: 27328375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A current-driven nanometer water pump.
    Su J; Yang K
    Nanotechnology; 2016 Mar; 27(9):095701. PubMed ID: 26822782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overscreening, Co-Ion-Dominated Electroosmosis, and Electric Field Strength Mediated Flow Reversal in Polyelectrolyte Brush Functionalized Nanochannels.
    Pial TH; Sachar HS; Desai PR; Das S
    ACS Nano; 2021 Apr; 15(4):6507-6516. PubMed ID: 33797221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.