BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35259380)

  • 1. Evaluation of a green-sustainable industrialized cleaner utilization for refractory cyanide tailings containing sulfur.
    Li H; Wang J; Zhu X; Yang T; Deng J; Yan B; Mao X; Zhang Y; Li S
    Sci Total Environ; 2022 Jun; 827():154359. PubMed ID: 35259380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effectiveness of microwave-assisted thermal treatment in the extraction of gold in cyanide tailings.
    Li H; Long H; Zhang L; Yin S; Li S; Zhu F; Xie H
    J Hazard Mater; 2020 Feb; 384():121456. PubMed ID: 31668759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental analysis on cyanide removal of gold tailings under medium-temperature roasting.
    Hai L; Fang X; Zhao X; Xu B; Cheng T
    Sci Rep; 2023 Mar; 13(1):3831. PubMed ID: 36882442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery iron from cyanide tailings by anaerobic roasting-persulfate leaching: effect of roasting temperature.
    Dong P; Song Y; Wu L; Bao J; Yin N; Zhu R; Li Y
    Environ Sci Pollut Res Int; 2023 Apr; 30(17):50537-50548. PubMed ID: 36795215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A critical review of the effects of gold cyanide-bearing tailings solutions on wildlife.
    Donato DB; Nichols O; Possingham H; Moore M; Ricci PF; Noller BN
    Environ Int; 2007 Oct; 33(7):974-84. PubMed ID: 17540445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of iron from cyanide tailings with reduction roasting-water leaching followed by magnetic separation.
    Zhang Y; Li H; Yu X
    J Hazard Mater; 2012 Apr; 213-214():167-74. PubMed ID: 22333161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic detoxification by combined reagents and safe filling utilization of cyanide tailings.
    Liu Q; Luo Y; Shi J; Wu Z; Wang Q
    Chemosphere; 2023 Jan; 312(Pt 1):137157. PubMed ID: 36368542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel method for dearsenization from arsenic-bearing waste slag by selective chlorination and low-temperature volatilization.
    Xing Z; Yang H; Xue X; Jiang P
    Environ Sci Pollut Res Int; 2022 Aug; 29(40):60145-60152. PubMed ID: 35419688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reagent elution combined with positive pressure filtration: A zero-discharge method for cyanide tailings remediation.
    Liu Q; Luo Y; Shi J
    J Environ Sci (China); 2022 Mar; 113():376-384. PubMed ID: 34963545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and availability of cyanide in solid mine tailings from gold extraction plants.
    Zagury GJ; Oudjehani K; Deschênes L
    Sci Total Environ; 2004 Mar; 320(2-3):211-24. PubMed ID: 15016508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomass waste as a clean reductant for iron recovery of iron tailings by magnetization roasting.
    Deng J; Ning XA; Shen J; Ou W; Chen J; Qiu G; Wang Y; He Y
    J Environ Manage; 2022 Sep; 317():115435. PubMed ID: 35751253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient approach to utilize copper smelting slag: Separating nonferrous metals and reducing iron oxide at high temperature.
    Wu L; Li H; Liu K; Mei H; Xia Y; Dong Y
    Waste Manag; 2023 Dec; 172():182-191. PubMed ID: 37922838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination and detoxification of cyanide in gold mine tailings: A review.
    Anning C; Wang J; Chen P; Batmunkh I; Lyu X
    Waste Manag Res; 2019 Nov; 37(11):1117-1126. PubMed ID: 31603399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of hypochlorite in the harmless treatment of cyanide tailings through slurry electrolysis.
    Chen Y; Song Y; Wu L; Dong P
    Environ Sci Pollut Res Int; 2022 Jun; 29(26):40178-40189. PubMed ID: 35122199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First insight into the natural biodegradation of cyanide in a gold tailings environment enriched in cyanide compounds.
    Welman-Purchase MD; Castillo J; Gomez-Arias A; Matu A; Hansen RN
    Sci Total Environ; 2024 Jan; 906():167174. PubMed ID: 37741393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective nitridation-corrosion process to recover vanadium, titanium, chromium, and iron from vanadium slag.
    Hu Q; Pan S; Gao X; Liu Y; Huang Q; You Y; You Z; Lv X
    J Environ Manage; 2023 Jan; 325(Pt B):116604. PubMed ID: 36308966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current situation and prospects for the clean utilization of gold tailings.
    Li S; Chen J; Gao W; Lyu X; Liang Z; Zhou W
    Waste Manag; 2024 May; 180():149-161. PubMed ID: 38569437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics Evaluation and Verification of High-Sulfur Copper Slag Composite Agglomerate in Oxidation-Roasting-Separation-Leaching Process.
    Zhao K; Zhang X; Zhao W; Guo H; Zhang Q; Zhen C
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural attenuation potential of cyanide via microbial activity in mine tailings.
    Oudjehani K; Zagury GJ; Deschênes L
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):409-15. PubMed ID: 11935195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of medium and small-scale gold processing operations, wastewaters, and tailings in the Arequipa region of Peru.
    Hammer V; Vanneste J; Alejo-Zapata FD; Zea J; Bolaños-Sosa HG; Zevallos Rojas CA; Figueroa LA; Malone A; Bellona C; Vuono DC
    Sci Total Environ; 2024 Oct; 945():174034. PubMed ID: 38885716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.